Lösung 3.4:2
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.4:2 moved to Solution 3.4:2: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If the equation has the root |
- | < | + | <math>z=\text{1}</math>, this means, according to the factor rule, that the equation mustcontain the |
- | {{ | + | <math>z=\text{1}</math>, i.e. the polynomial on the left-hand side can be written as |
+ | |||
+ | |||
+ | <math>z^{3}-3z^{2}+4z-2=\left( z^{2}+Az+B \right)\left( z-1 \right)</math> | ||
+ | |||
+ | |||
+ | for some constants | ||
+ | <math>A</math> | ||
+ | and | ||
+ | <math>B</math>. We can determine the other unknown factor using polynomial division: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z^{3}-3z^{2}+4z-2=\left( z^{2}+Az+B \right)\left( z-1 \right) \\ | ||
+ | & z^{2}+Az+B=\frac{z^{3}-3z^{2}+4z-2}{z-1} \\ | ||
+ | & =\frac{z^{3}-z^{2}+z^{2}-3z^{2}+4z-2}{z-1} \\ | ||
+ | & =\frac{z^{2}\left( z-1 \right)-2z^{2}+4z-2}{z-1} \\ | ||
+ | & =z^{2}+\frac{-2z^{2}+4z-2}{z-1} \\ | ||
+ | & =z^{2}+\frac{-2z^{2}+2z-2z+4z-2}{z-1} \\ | ||
+ | & =z^{2}+\frac{-2z\left( z-1 \right)+2z-2}{z-1} \\ | ||
+ | & =z^{2}-2z+\frac{2z-2}{z-1} \\ | ||
+ | & =z^{2}-2z+\frac{2\left( z-1 \right)}{z-1} \\ | ||
+ | & =z^{2}-2z+2 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Thus, the equation can be written as | ||
+ | |||
+ | |||
+ | <math>\left( z-1 \right)\left( z^{2}-2z+2 \right)=0</math> | ||
+ | |||
+ | |||
+ | The advantage of writing the equation in this factorized form is that we can now conclude that the equation's two other roots must be zeros of the factor | ||
+ | <math>z^{2}-2z+2</math>. This is because the left-hand side is zero only when at least one of the factors | ||
+ | <math>z-\text{1}</math> | ||
+ | or | ||
+ | <math>z^{2}-2z+2</math> | ||
+ | is zero, and we see directly that | ||
+ | <math>z-\text{1}</math> | ||
+ | is zero only when | ||
+ | <math>z=\text{1}</math>. | ||
+ | |||
+ | Hence, we determine the roots by solving the equation | ||
+ | |||
+ | |||
+ | <math>z^{2}-2z+2=0</math> | ||
+ | |||
+ | |||
+ | Completing the square gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( z-\text{1} \right)^{2}-1^{2}+2=0 \\ | ||
+ | & \left( z-\text{1} \right)^{2}=-1 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and taking the root gives that | ||
+ | <math>z-\text{1}=\pm i</math> | ||
+ | i.e. | ||
+ | <math>z=1-i</math> | ||
+ | and | ||
+ | <math>z=1+i</math>. | ||
+ | |||
+ | The equation's other roots are | ||
+ | <math>z=1-i</math> | ||
+ | and | ||
+ | <math>z=1+i</math>. | ||
+ | |||
+ | As an extra check, we investigate whether | ||
+ | <math>z-\text{1}=\pm i</math> | ||
+ | really are roots of the equation. | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=1+i:\quad z^{3}-3z^{2}+4z-2=\left( \left( z-3 \right)z+4 \right)z-2 \\ | ||
+ | & =\left( \left( 1+i-3 \right)\left( 1+i \right)+4 \right)\left( 1+i \right)-2 \\ | ||
+ | & =\left( \left( -2+i \right)\left( 1+i \right)+4 \right)\left( 1+i \right)-2 \\ | ||
+ | & =\left( -2+i-2i-1+4 \right)\left( 1+i \right)-2 \\ | ||
+ | & =\left( 1-i \right)\left( 1+i \right)-2 \\ | ||
+ | & =1^{2}-i^{2}-2=1+1-2=0 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=1-i:\quad z^{3}-3z^{2}+4z-2=\left( \left( z-3 \right)z+4 \right)z-2 \\ | ||
+ | & =\left( \left( 1-i-3 \right)\left( 1-i \right)+4 \right)\left( 1-i \right)-2 \\ | ||
+ | & =\left( \left( -2-i \right)\left( 1-i \right)+4 \right)\left( 1-i \right)-2 \\ | ||
+ | & =\left( -2-i+2i-1+4 \right)\left( 1-i \right)-2 \\ | ||
+ | & =\left( 1+i \right)\left( 1-i \right)-2 \\ | ||
+ | & =1^{2}-i^{2}-2=1+1-2=0 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | NOTE: Writing | ||
+ | |||
+ | |||
+ | <math>z^{3}-3z^{2}+4z-2=\left( \left( z-3 \right)z+4 \right)z-2</math> | ||
+ | |||
+ | |||
+ | is known as the Horner scheme and is used to reduce the amount of the arithmetical work. |
Version vom 09:25, 28. Okt. 2008
If the equation has the root \displaystyle z=\text{1}, this means, according to the factor rule, that the equation mustcontain the \displaystyle z=\text{1}, i.e. the polynomial on the left-hand side can be written as
\displaystyle z^{3}-3z^{2}+4z-2=\left( z^{2}+Az+B \right)\left( z-1 \right)
for some constants
\displaystyle A
and
\displaystyle B. We can determine the other unknown factor using polynomial division:
\displaystyle \begin{align}
& z^{3}-3z^{2}+4z-2=\left( z^{2}+Az+B \right)\left( z-1 \right) \\
& z^{2}+Az+B=\frac{z^{3}-3z^{2}+4z-2}{z-1} \\
& =\frac{z^{3}-z^{2}+z^{2}-3z^{2}+4z-2}{z-1} \\
& =\frac{z^{2}\left( z-1 \right)-2z^{2}+4z-2}{z-1} \\
& =z^{2}+\frac{-2z^{2}+4z-2}{z-1} \\
& =z^{2}+\frac{-2z^{2}+2z-2z+4z-2}{z-1} \\
& =z^{2}+\frac{-2z\left( z-1 \right)+2z-2}{z-1} \\
& =z^{2}-2z+\frac{2z-2}{z-1} \\
& =z^{2}-2z+\frac{2\left( z-1 \right)}{z-1} \\
& =z^{2}-2z+2 \\
\end{align}
Thus, the equation can be written as
\displaystyle \left( z-1 \right)\left( z^{2}-2z+2 \right)=0
The advantage of writing the equation in this factorized form is that we can now conclude that the equation's two other roots must be zeros of the factor
\displaystyle z^{2}-2z+2. This is because the left-hand side is zero only when at least one of the factors
\displaystyle z-\text{1}
or
\displaystyle z^{2}-2z+2
is zero, and we see directly that
\displaystyle z-\text{1}
is zero only when
\displaystyle z=\text{1}.
Hence, we determine the roots by solving the equation
\displaystyle z^{2}-2z+2=0
Completing the square gives
\displaystyle \begin{align}
& \left( z-\text{1} \right)^{2}-1^{2}+2=0 \\
& \left( z-\text{1} \right)^{2}=-1 \\
\end{align}
and taking the root gives that
\displaystyle z-\text{1}=\pm i
i.e.
\displaystyle z=1-i
and
\displaystyle z=1+i.
The equation's other roots are \displaystyle z=1-i and \displaystyle z=1+i.
As an extra check, we investigate whether \displaystyle z-\text{1}=\pm i really are roots of the equation.
\displaystyle \begin{align}
& z=1+i:\quad z^{3}-3z^{2}+4z-2=\left( \left( z-3 \right)z+4 \right)z-2 \\
& =\left( \left( 1+i-3 \right)\left( 1+i \right)+4 \right)\left( 1+i \right)-2 \\
& =\left( \left( -2+i \right)\left( 1+i \right)+4 \right)\left( 1+i \right)-2 \\
& =\left( -2+i-2i-1+4 \right)\left( 1+i \right)-2 \\
& =\left( 1-i \right)\left( 1+i \right)-2 \\
& =1^{2}-i^{2}-2=1+1-2=0 \\
\end{align}
\displaystyle \begin{align} & z=1-i:\quad z^{3}-3z^{2}+4z-2=\left( \left( z-3 \right)z+4 \right)z-2 \\ & =\left( \left( 1-i-3 \right)\left( 1-i \right)+4 \right)\left( 1-i \right)-2 \\ & =\left( \left( -2-i \right)\left( 1-i \right)+4 \right)\left( 1-i \right)-2 \\ & =\left( -2-i+2i-1+4 \right)\left( 1-i \right)-2 \\ & =\left( 1+i \right)\left( 1-i \right)-2 \\ & =1^{2}-i^{2}-2=1+1-2=0 \\ \end{align}
NOTE: Writing
\displaystyle z^{3}-3z^{2}+4z-2=\left( \left( z-3 \right)z+4 \right)z-2
is known as the Horner scheme and is used to reduce the amount of the arithmetical work.