Lösung 3.3:5a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:5a moved to Solution 3.3:5a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the root.
-
<center> [[Image:3_3_5a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
We complete the square on the left-hand side:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( z-\left( 1+i \right) \right)^{2}-\left( 1+i \right)^{2}+2i-1=0 \\
 +
& \left( z-\left( 1+i \right) \right)^{2}-\left( 1+2i+i^{2} \right)+2i-1=0 \\
 +
& \left( z-\left( 1+i \right) \right)^{2}-1-2i+1+2i-1=0 \\
 +
& \left( z-\left( 1+i \right) \right)^{2}-1=0 \\
 +
\end{align}</math>
 +
 
 +
 
 +
Now, we see that the equation has the solutions
 +
 
 +
 
 +
<math>z-\left( 1+i \right)=\pm 1\quad \Leftrightarrow \quad \left\{ \begin{array}{*{35}l}
 +
2+i \\
 +
i\text{ } \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
We test the solutions:
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=2+i:\quad z^{2}-2\left( 1+i \right)z+2i-1 \\
 +
& =\left( 2+i \right)^{2}-2\left( 1+i \right)\left( 2+i \right)+2i-1 \\
 +
& =4+4i+i^{2}-2\left( 2+i+2i+i^{2} \right)+2i-1 \\
 +
& =4+4i-1-4-6i+2+2i-1=0 \\
 +
& \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=i:\quad z^{2}-2\left( 1+i \right)z+2i-1 \\
 +
& =i^{2}-2\left( 1+i \right)i+2i-1 \\
 +
& =-1-2\left( i+i^{2} \right)+2i-1 \\
 +
& =-1-2i+2+2i-1=0 \\
 +
\end{align}</math>

Version vom 11:09, 25. Okt. 2008

Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the root.

We complete the square on the left-hand side:


\displaystyle \begin{align} & \left( z-\left( 1+i \right) \right)^{2}-\left( 1+i \right)^{2}+2i-1=0 \\ & \left( z-\left( 1+i \right) \right)^{2}-\left( 1+2i+i^{2} \right)+2i-1=0 \\ & \left( z-\left( 1+i \right) \right)^{2}-1-2i+1+2i-1=0 \\ & \left( z-\left( 1+i \right) \right)^{2}-1=0 \\ \end{align}


Now, we see that the equation has the solutions


\displaystyle z-\left( 1+i \right)=\pm 1\quad \Leftrightarrow \quad \left\{ \begin{array}{*{35}l} 2+i \\ i\text{ } \\ \end{array} \right.


We test the solutions:


\displaystyle \begin{align} & z=2+i:\quad z^{2}-2\left( 1+i \right)z+2i-1 \\ & =\left( 2+i \right)^{2}-2\left( 1+i \right)\left( 2+i \right)+2i-1 \\ & =4+4i+i^{2}-2\left( 2+i+2i+i^{2} \right)+2i-1 \\ & =4+4i-1-4-6i+2+2i-1=0 \\ & \\ \end{align}


\displaystyle \begin{align} & z=i:\quad z^{2}-2\left( 1+i \right)z+2i-1 \\ & =i^{2}-2\left( 1+i \right)i+2i-1 \\ & =-1-2\left( i+i^{2} \right)+2i-1 \\ & =-1-2i+2+2i-1=0 \\ \end{align}