Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 2
| K  (Lösning 3.3:4c moved to Solution 3.3:4c: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We complete the square on the left-hand side: | 
| - | < | + | |
| - | {{ | + | |
| + | <math>\begin{align} | ||
| + | & \left( z+1 \right)^{\text{2}}-1^{2}+3=0 \\  | ||
| + | & \left( z+1 \right)^{\text{2}}+2=0 \\  | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | Taking the root now gives  | ||
| + | <math>z+1=\pm i\sqrt{2}</math> | ||
| + | i.e.  | ||
| + | <math>z=-1+i\sqrt{2}</math> | ||
| + | and  | ||
| + | <math>z=-1-i\sqrt{2}</math>. | ||
| + | |||
| + | We test the solutions in the equation to ascertain that we have calculated correctly. | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & z=-1+i\sqrt{2}:\quad z^{2}+2z+3=\left( -1+i\sqrt{2} \right)^{2}+2\left( -1+i\sqrt{2} \right)+3 \\  | ||
| + | & =\left( -1 \right)^{2}-2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2+2i\sqrt{2}+3 \\  | ||
| + | & =1-2\centerdot i\sqrt{2}-2-2+2i\sqrt{2}+3=0, \\  | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & z=-1-i\sqrt{2}:\quad z^{2}+2z+3=\left( -1-i\sqrt{2} \right)^{2}+2\left( -1-i\sqrt{2} \right)+3 \\  | ||
| + | & =\left( -1 \right)^{2}+2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2-2i\sqrt{2}+3 \\  | ||
| + | & =1+2\centerdot i\sqrt{2}-2-2-2\sqrt{2}i+3=0, \\  | ||
| + | \end{align}</math> | ||
Version vom 10:32, 25. Okt. 2008
We complete the square on the left-hand side:
\displaystyle \begin{align}
& \left( z+1 \right)^{\text{2}}-1^{2}+3=0 \\ 
& \left( z+1 \right)^{\text{2}}+2=0 \\ 
\end{align}
Taking the root now gives 
\displaystyle z+1=\pm i\sqrt{2}
i.e. 
\displaystyle z=-1+i\sqrt{2}
and 
\displaystyle z=-1-i\sqrt{2}.
We test the solutions in the equation to ascertain that we have calculated correctly.
\displaystyle \begin{align}
& z=-1+i\sqrt{2}:\quad z^{2}+2z+3=\left( -1+i\sqrt{2} \right)^{2}+2\left( -1+i\sqrt{2} \right)+3 \\ 
& =\left( -1 \right)^{2}-2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2+2i\sqrt{2}+3 \\ 
& =1-2\centerdot i\sqrt{2}-2-2+2i\sqrt{2}+3=0, \\ 
\end{align}
\displaystyle \begin{align} & z=-1-i\sqrt{2}:\quad z^{2}+2z+3=\left( -1-i\sqrt{2} \right)^{2}+2\left( -1-i\sqrt{2} \right)+3 \\ & =\left( -1 \right)^{2}+2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2-2i\sqrt{2}+3 \\ & =1+2\centerdot i\sqrt{2}-2-2-2\sqrt{2}i+3=0, \\ \end{align}
 
		  