Lösung 3.3:4a
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:4a moved to Solution 3.3:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | This is a typical binomial equation which we solve in polar form. |
- | < | + | |
- | {{ | + | We write |
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=r\left( \cos \alpha +i\sin \alpha \right) \\ | ||
+ | & i=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and, on using de Moivre's formula, the equation becomes | ||
+ | |||
+ | |||
+ | <math>r^{2}\left( \cos 2\alpha +i\sin 2\alpha \right)=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)</math> | ||
+ | |||
+ | |||
+ | Both sides are equal when | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r^{2}=1 \\ | ||
+ | 2\alpha =\frac{\pi }{2}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | which gives that | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r=1 \\ | ||
+ | \alpha =\frac{\pi }{4}+n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | When | ||
+ | <math>n=0</math> | ||
+ | and | ||
+ | <math>n=\text{1}</math>, we get two different arguments for | ||
+ | <math>\alpha </math>, whilst different values of | ||
+ | <math>n</math> | ||
+ | only give these arguments plus/minus a multiple of | ||
+ | <math>2\pi </math>. | ||
+ | |||
+ | The solutions to the equation are | ||
+ | |||
+ | |||
+ | <math>z=\left\{ \begin{array}{*{35}l} | ||
+ | \ 1\centerdot \left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ | ||
+ | \ 1\centerdot \left( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right) \\ | ||
+ | \end{array} \right.=\left\{ \begin{array}{*{35}l} | ||
+ | \ \frac{1+i}{\sqrt{2}} \\ | ||
+ | \ -\frac{1+i}{\sqrt{2}} \\ | ||
+ | \end{array} \right.</math> |
Version vom 09:37, 25. Okt. 2008
This is a typical binomial equation which we solve in polar form.
We write
\displaystyle \begin{align}
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
& i=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right) \\
\end{align}
and, on using de Moivre's formula, the equation becomes
\displaystyle r^{2}\left( \cos 2\alpha +i\sin 2\alpha \right)=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)
Both sides are equal when
\displaystyle \left\{ \begin{array}{*{35}l}
r^{2}=1 \\
2\alpha =\frac{\pi }{2}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
which gives that
\displaystyle \left\{ \begin{array}{*{35}l}
r=1 \\
\alpha =\frac{\pi }{4}+n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
When
\displaystyle n=0
and
\displaystyle n=\text{1}, we get two different arguments for
\displaystyle \alpha , whilst different values of
\displaystyle n
only give these arguments plus/minus a multiple of
\displaystyle 2\pi .
The solutions to the equation are
\displaystyle z=\left\{ \begin{array}{*{35}l}
\ 1\centerdot \left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\
\ 1\centerdot \left( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right) \\
\end{array} \right.=\left\{ \begin{array}{*{35}l}
\ \frac{1+i}{\sqrt{2}} \\
\ -\frac{1+i}{\sqrt{2}} \\
\end{array} \right.