Lösung 3.3:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:2e moved to Solution 3.3:2e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we treat the expression
-
<center> [[Image:3_3_2e-1(2).gif]] </center>
+
<math>w=\frac{z+i}{z-i}</math>
-
{{NAVCONTENT_STOP}}
+
as an unknown, we have the equation
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_3_2e-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>w^{2}=-1</math>
 +
 
 +
 
 +
We know already that this equation has roots
 +
 
 +
 
 +
<math>w=\left\{ \begin{array}{*{35}l}
 +
-i \\
 +
i \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
so
 +
<math>z\text{ }</math>
 +
should satisfy one of the equation's
 +
 
 +
 
 +
<math>\frac{z+i}{z-i}=-i</math>
 +
or
 +
<math>\frac{z+i}{z-i}=i</math>
 +
 
 +
 
 +
We solve these equations one by one.
 +
 
 +
 
 +
<math>\underline{\underline{\frac{z+i}{z-i}=-i}}</math>
 +
 
 +
 
 +
Multiply both sides by
 +
<math>z-i</math>:
 +
 
 +
 
 +
<math>z+i=-i\left( z-i \right)</math>
 +
 
 +
 
 +
Move all the
 +
<math>z</math>
 +
-terms over to the left-hand side and all the constants to the right-hand side,
 +
 
 +
 
 +
<math>z+iz=-1-i</math>
 +
 
 +
 
 +
This gives
 +
 
 +
 
 +
<math>z=\frac{-1-i}{1+i}=\frac{-\left( 1+i \right)}{1+i}=-1</math>
 +
 
 +
 
 +
 
 +
 +
<math>\underline{\underline{\frac{z+i}{z-i}=i}}</math>
 +
 
 +
 
 +
Multiply both sides by
 +
<math>z-i</math>:
 +
 
 +
 
 +
<math>z+i=i\left( z-i \right)</math>
 +
 
 +
 
 +
Move all the z-terms over to the left-hand side and all the constants to the right-hand side,
 +
 
 +
 
 +
<math>z-iz=1-i</math>
 +
 
 +
 
 +
This gives
 +
 
 +
 
 +
<math>z=\frac{1-i}{1-i}=1</math>
 +
 
 +
 
 +
The solutions are therefore
 +
<math>z=-\text{1}</math>
 +
and
 +
<math>z=\text{1}</math>.

Version vom 11:09, 24. Okt. 2008

If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation


\displaystyle w^{2}=-1


We know already that this equation has roots


\displaystyle w=\left\{ \begin{array}{*{35}l} -i \\ i \\ \end{array} \right.


so \displaystyle z\text{ } should satisfy one of the equation's


\displaystyle \frac{z+i}{z-i}=-i or \displaystyle \frac{z+i}{z-i}=i


We solve these equations one by one.


\displaystyle \underline{\underline{\frac{z+i}{z-i}=-i}}


Multiply both sides by \displaystyle z-i:


\displaystyle z+i=-i\left( z-i \right)


Move all the \displaystyle z -terms over to the left-hand side and all the constants to the right-hand side,


\displaystyle z+iz=-1-i


This gives


\displaystyle z=\frac{-1-i}{1+i}=\frac{-\left( 1+i \right)}{1+i}=-1



\displaystyle \underline{\underline{\frac{z+i}{z-i}=i}}


Multiply both sides by \displaystyle z-i:


\displaystyle z+i=i\left( z-i \right)


Move all the z-terms over to the left-hand side and all the constants to the right-hand side,


\displaystyle z-iz=1-i


This gives


\displaystyle z=\frac{1-i}{1-i}=1


The solutions are therefore \displaystyle z=-\text{1} and \displaystyle z=\text{1}.