Lösung 3.2:6f
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.2:6f moved to Solution 3.2:6f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can write every factor in the numerator and denominator in polar form and then use the arithmetical rules for multiplication and division in polar form: |
- | + | ||
- | { | + | |
- | {{ | + | <math>\begin{array}{*{35}l} |
- | + | \bullet \quad r_{1}\left( \cos \alpha +i\sin \alpha \right)\centerdot r_{2}\left( \cos \beta +i\sin \beta \right)=r_{1}r_{2} \\ | |
- | + | \bullet \quad \frac{r_{1}\left( \cos \alpha +i\sin \alpha \right)}{r_{2}\left( \cos \beta +i\sin \beta \right)}=\frac{r_{1}}{r_{2}}\left( \cos \left( \alpha -\beta \right)+i\sin \left( \alpha -\beta \right) \right) \\ | |
+ | \end{array}</math> | ||
+ | |||
+ | |||
+ | In fact, most of the work consists of writing all the factors in polar form: | ||
+ | |||
[[Image:3_2_6_f1_bild.gif]][[Image:3_2_6_f1_bildtext.gif]] | [[Image:3_2_6_f1_bild.gif]][[Image:3_2_6_f1_bildtext.gif]] | ||
[[Image:3_2_6_f2_bild.gif]][[Image:3_2_6_f2_bildtext.gif]] | [[Image:3_2_6_f2_bild.gif]][[Image:3_2_6_f2_bildtext.gif]] | ||
+ | |||
+ | The whole expression becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{\left( 2+2i \right)\left( 1+i\sqrt{3} \right)}{3i\left( \sqrt{12}-2i \right)}=\frac{2\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right)\centerdot 2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)}{3\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\centerdot 4\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right)} \\ | ||
+ | & =\frac{4\sqrt{2}\left( \cos \left( \frac{\pi }{4}+\frac{\pi }{3} \right)+i\sin \left( \frac{\pi }{4}+\frac{\pi }{3} \right) \right)}{12\left( \cos \left( \frac{\pi }{2}-\frac{\pi }{6} \right)+i\sin \left( \frac{\pi }{2}-\frac{\pi }{6} \right) \right)} \\ | ||
+ | & =\frac{4\sqrt{2}\left( \cos \frac{7\pi }{12}+i\sin \frac{7\pi }{12} \right)}{12\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)} \\ | ||
+ | & =\frac{4\sqrt{2}}{12}\left( \cos \left( \frac{7\pi }{12}-\frac{\pi }{3} \right)+i\sin \left( \frac{7\pi }{12}-\frac{\pi }{3} \right) \right) \\ | ||
+ | & =\frac{\sqrt{2}}{3}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ | ||
+ | \end{align}</math> |
Version vom 11:00, 23. Okt. 2008
We can write every factor in the numerator and denominator in polar form and then use the arithmetical rules for multiplication and division in polar form:
\displaystyle \begin{array}{*{35}l}
\bullet \quad r_{1}\left( \cos \alpha +i\sin \alpha \right)\centerdot r_{2}\left( \cos \beta +i\sin \beta \right)=r_{1}r_{2} \\
\bullet \quad \frac{r_{1}\left( \cos \alpha +i\sin \alpha \right)}{r_{2}\left( \cos \beta +i\sin \beta \right)}=\frac{r_{1}}{r_{2}}\left( \cos \left( \alpha -\beta \right)+i\sin \left( \alpha -\beta \right) \right) \\
\end{array}
In fact, most of the work consists of writing all the factors in polar form:
The whole expression becomes
\displaystyle \begin{align}
& \frac{\left( 2+2i \right)\left( 1+i\sqrt{3} \right)}{3i\left( \sqrt{12}-2i \right)}=\frac{2\sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right)\centerdot 2\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)}{3\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\centerdot 4\left( \cos \left( -\frac{\pi }{6} \right)+i\sin \left( -\frac{\pi }{6} \right) \right)} \\
& =\frac{4\sqrt{2}\left( \cos \left( \frac{\pi }{4}+\frac{\pi }{3} \right)+i\sin \left( \frac{\pi }{4}+\frac{\pi }{3} \right) \right)}{12\left( \cos \left( \frac{\pi }{2}-\frac{\pi }{6} \right)+i\sin \left( \frac{\pi }{2}-\frac{\pi }{6} \right) \right)} \\
& =\frac{4\sqrt{2}\left( \cos \frac{7\pi }{12}+i\sin \frac{7\pi }{12} \right)}{12\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)} \\
& =\frac{4\sqrt{2}}{12}\left( \cos \left( \frac{7\pi }{12}-\frac{\pi }{3} \right)+i\sin \left( \frac{7\pi }{12}-\frac{\pi }{3} \right) \right) \\
& =\frac{\sqrt{2}}{3}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\
\end{align}