Lösung 3.2:4c
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.2:4c moved to Solution 3.2:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | One way to determine the magnitude is to calculate the product |
- | < | + | <math>\left( \text{3}-\text{4}i \right)\left( \text{3}+\text{2}i \right)</math> |
- | {{ | + | and then to take the magnitude of the result, but for products |
+ | |||
+ | |||
+ | <math>\left| zw \right|=\left| z \right|\centerdot \left| w \right|</math> | ||
+ | |||
+ | |||
+ | and we can take the magnitude of the factors | ||
+ | <math>\text{3}-\text{4}i</math> | ||
+ | and | ||
+ | <math>\text{3}+\text{2}i</math> | ||
+ | and then multiply the magnitudes together: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left| \left( \text{3}-\text{4}i \right)\left( \text{3}+\text{2}i \right) \right|=\left| \left( \text{3}-\text{4}i \right) \right|\centerdot \left| \left( \text{3}+\text{2}i \right) \right| \\ | ||
+ | & =\sqrt{3^{2}+\left( -4 \right)^{2}}\centerdot \sqrt{3^{2}+2^{2}} \\ | ||
+ | & =\sqrt{9+16}\centerdot \sqrt{9+4} \\ | ||
+ | & =\sqrt{25}\centerdot \sqrt{13}=5\sqrt{13} \\ | ||
+ | \end{align}</math> |
Version vom 15:33, 22. Okt. 2008
One way to determine the magnitude is to calculate the product \displaystyle \left( \text{3}-\text{4}i \right)\left( \text{3}+\text{2}i \right) and then to take the magnitude of the result, but for products
\displaystyle \left| zw \right|=\left| z \right|\centerdot \left| w \right|
and we can take the magnitude of the factors
\displaystyle \text{3}-\text{4}i
and
\displaystyle \text{3}+\text{2}i
and then multiply the magnitudes together:
\displaystyle \begin{align}
& \left| \left( \text{3}-\text{4}i \right)\left( \text{3}+\text{2}i \right) \right|=\left| \left( \text{3}-\text{4}i \right) \right|\centerdot \left| \left( \text{3}+\text{2}i \right) \right| \\
& =\sqrt{3^{2}+\left( -4 \right)^{2}}\centerdot \sqrt{3^{2}+2^{2}} \\
& =\sqrt{9+16}\centerdot \sqrt{9+4} \\
& =\sqrt{25}\centerdot \sqrt{13}=5\sqrt{13} \\
\end{align}