Lösung 2.1:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we draw the curve
+
If we draw the curve <math>y=\sin x</math>, we see that the curve lies above the ''x''-axis as far as <math>x=\pi </math> and then lies under the ''x''-axis.
-
<math>y=\sin x</math>, we see that the curve lies above the
+
-
<math>x</math>
+
-
-axis as far as
+
-
<math>x=\pi </math>
+
-
and then lies under the
+
-
<math>x</math>
+
-
-axis.
+
-
 
+
-
 
+
[[Image:2_1_4_a1.gif|center]]
[[Image:2_1_4_a1.gif|center]]
-
The area of the region between
+
The area of the region between <math>x=0</math> and <math>x=\pi</math> can therefore be written as
-
<math>x=0</math>
+
-
and
+
-
<math>x=\pi </math>
+
-
can therefore be written as
+
 +
{{Displayed math||<math>\int\limits_{0}^{\pi} \sin x\,dx</math>}}
-
<math>\int\limits_{0}^{\pi }{\sin x}\,dx</math>
+
whilst the area of the remaining region under the ''x''-axis is equal to
-
 
+
-
whilst the area of the remaining region under the
+
-
<math>x</math>
+
-
-axis is equal to
+
-
 
+
-
 
+
-
<math>-\int\limits_{\pi }^{{5\pi }/{4}\;}{\sin x}\,dx</math>
+
 +
{{Displayed math||<math>-\int\limits_{\pi}^{5\pi/4} \sin x\,dx</math>}}
(note the minus sign in front of the integral).
(note the minus sign in front of the integral).
Zeile 33: Zeile 15:
The total area becomes
The total area becomes
 +
{{Displayed math||<math>\begin{align}
 +
& \int\limits_{0}^{\pi} \sin x\,dx - \int\limits_{\pi}^{5\pi/4} \sin x\,dx\\[5pt]
 +
&\qquad\quad {}= \Bigl[\ -\cos x\ \Bigr]_0^\pi - \Bigl[\ -\cos x\ \Bigr]_\pi^{5\pi/4}\\[5pt]
 +
&\qquad\quad {}= \Bigl( -\cos\pi - (-\cos 0)\Bigr) - \Bigl( -\cos\frac{5\pi}{4} - (-\cos\pi) \Bigr)\\[5pt]
 +
&\qquad\quad {}= \Bigl( -(-1)-(-1) \Bigr) - \Bigl( -\Bigl(-\frac{1}{\sqrt{2}} \Bigr) - \bigl(-(-1)\bigr)\Bigr)\\[5pt]
 +
&\qquad\quad {}= 1+1-\frac{1}{\sqrt{2}}+1\\[5pt]
 +
&\qquad\quad {}= 3-\frac{1}{\sqrt{2}}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
 
-
& \int\limits_{0}^{\pi }{\sin x}\,dx-\int\limits_{\pi }^{{5\pi }/{4}\;}{\sin x}\,dx \\
 
-
& =\left[ -\cos x \right]_{0}^{\pi }-\left[ -\cos x \right]_{\pi }^{{5\pi }/{4}\;} \\
 
-
& =\left( -\cos \pi -\left( -\cos 0 \right) \right)-\left( -\cos \frac{5\pi }{4}-\left( -\cos \pi \right) \right) \\
 
-
& =\left( -\left( -1 \right)-\left( -1 \right) \right)-\left( -\left( -\frac{1}{\sqrt{2}} \right)-\left( -\left( -1 \right) \right) \right) \\
 
-
& =1+1-\frac{1}{\sqrt{2}}+1=3-\frac{1}{\sqrt{2}} \\
 
-
\end{align}</math>
 
- 
- 
-
NOTE: a simple way to obtain the values of
 
-
<math>\cos 0</math>,
 
-
<math>\cos \pi </math>
 
-
and
 
-
<math>\cos \frac{5\pi }{4}</math>
 
-
is to draw the angles
 
-
<math>0</math>,
 
-
<math>\pi </math>
 
-
and
 
-
<math>\frac{5\pi }{4}</math>
 
-
on a unit circle and to read off the cosine value as the
 
-
<math>x</math>
 
-
-coordinate for the corresponding point on the circle.
 
 +
Note: A simple way to obtain the values of <math>\cos 0</math>, <math>\cos \pi </math> and <math>\cos (5\pi/4)</math> is to draw the angles <math>0</math>, <math>\pi</math> and <math>5\pi/4</math> on a unit circle and to read off the cosine value as the ''x''-coordinate for the corresponding point on the circle.
[[Image:2_1_4_a2.gif|center]]
[[Image:2_1_4_a2.gif|center]]

Version vom 13:36, 21. Okt. 2008

If we draw the curve \displaystyle y=\sin x, we see that the curve lies above the x-axis as far as \displaystyle x=\pi and then lies under the x-axis.

The area of the region between \displaystyle x=0 and \displaystyle x=\pi can therefore be written as

\displaystyle \int\limits_{0}^{\pi} \sin x\,dx

whilst the area of the remaining region under the x-axis is equal to

\displaystyle -\int\limits_{\pi}^{5\pi/4} \sin x\,dx

(note the minus sign in front of the integral).

The total area becomes

\displaystyle \begin{align}

& \int\limits_{0}^{\pi} \sin x\,dx - \int\limits_{\pi}^{5\pi/4} \sin x\,dx\\[5pt] &\qquad\quad {}= \Bigl[\ -\cos x\ \Bigr]_0^\pi - \Bigl[\ -\cos x\ \Bigr]_\pi^{5\pi/4}\\[5pt] &\qquad\quad {}= \Bigl( -\cos\pi - (-\cos 0)\Bigr) - \Bigl( -\cos\frac{5\pi}{4} - (-\cos\pi) \Bigr)\\[5pt] &\qquad\quad {}= \Bigl( -(-1)-(-1) \Bigr) - \Bigl( -\Bigl(-\frac{1}{\sqrt{2}} \Bigr) - \bigl(-(-1)\bigr)\Bigr)\\[5pt] &\qquad\quad {}= 1+1-\frac{1}{\sqrt{2}}+1\\[5pt] &\qquad\quad {}= 3-\frac{1}{\sqrt{2}}\,\textrm{.} \end{align}


Note: A simple way to obtain the values of \displaystyle \cos 0, \displaystyle \cos \pi and \displaystyle \cos (5\pi/4) is to draw the angles \displaystyle 0, \displaystyle \pi and \displaystyle 5\pi/4 on a unit circle and to read off the cosine value as the x-coordinate for the corresponding point on the circle.