Lösung 2.1:4a
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:4a moved to Solution 2.1:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | If we draw the curve | |
- | < | + | <math>y=\sin x</math>, we see that the curve lies above the |
- | + | <math>x</math> | |
- | + | -axis as far as | |
- | < | + | <math>x=\pi </math> |
- | + | and then lies under the | |
+ | <math>x</math> | ||
+ | -axis. | ||
+ | |||
[[Image:2_1_4_a1.gif|center]] | [[Image:2_1_4_a1.gif|center]] | ||
+ | |||
+ | The area of the region between | ||
+ | <math>x=0</math> | ||
+ | and | ||
+ | <math>x=\pi </math> | ||
+ | can therefore be written as | ||
+ | |||
+ | |||
+ | <math>\int\limits_{0}^{\pi }{\sin x}\,dx</math> | ||
+ | |||
+ | whilst the area of the remaining region under the | ||
+ | <math>x</math> | ||
+ | -axis is equal to | ||
+ | |||
+ | |||
+ | <math>-\int\limits_{\pi }^{{5\pi }/{4}\;}{\sin x}\,dx</math> | ||
+ | |||
+ | |||
+ | (note the minus sign in front of the integral). | ||
+ | |||
+ | The total area becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{0}^{\pi }{\sin x}\,dx-\int\limits_{\pi }^{{5\pi }/{4}\;}{\sin x}\,dx \\ | ||
+ | & =\left[ -\cos x \right]_{0}^{\pi }-\left[ -\cos x \right]_{\pi }^{{5\pi }/{4}\;} \\ | ||
+ | & =\left( -\cos \pi -\left( -\cos 0 \right) \right)-\left( -\cos \frac{5\pi }{4}-\left( -\cos \pi \right) \right) \\ | ||
+ | & =\left( -\left( -1 \right)-\left( -1 \right) \right)-\left( -\left( -\frac{1}{\sqrt{2}} \right)-\left( -\left( -1 \right) \right) \right) \\ | ||
+ | & =1+1-\frac{1}{\sqrt{2}}+1=3-\frac{1}{\sqrt{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | NOTE: a simple way to obtain the values of | ||
+ | <math>\cos 0</math>, | ||
+ | <math>\cos \pi </math> | ||
+ | and | ||
+ | <math>\cos \frac{5\pi }{4}</math> | ||
+ | is to draw the angles | ||
+ | <math>0</math>, | ||
+ | <math>\pi </math> | ||
+ | and | ||
+ | <math>\frac{5\pi }{4}</math> | ||
+ | on a unit circle and to read off the cosine value as the | ||
+ | <math>x</math> | ||
+ | -coordinate for the corresponding point on the circle. | ||
+ | |||
+ | |||
[[Image:2_1_4_a2.gif|center]] | [[Image:2_1_4_a2.gif|center]] |
Version vom 10:02, 18. Okt. 2008
If we draw the curve \displaystyle y=\sin x, we see that the curve lies above the \displaystyle x -axis as far as \displaystyle x=\pi and then lies under the \displaystyle x -axis.
The area of the region between \displaystyle x=0 and \displaystyle x=\pi can therefore be written as
\displaystyle \int\limits_{0}^{\pi }{\sin x}\,dx
whilst the area of the remaining region under the \displaystyle x -axis is equal to
\displaystyle -\int\limits_{\pi }^{{5\pi }/{4}\;}{\sin x}\,dx
(note the minus sign in front of the integral).
The total area becomes
\displaystyle \begin{align}
& \int\limits_{0}^{\pi }{\sin x}\,dx-\int\limits_{\pi }^{{5\pi }/{4}\;}{\sin x}\,dx \\
& =\left[ -\cos x \right]_{0}^{\pi }-\left[ -\cos x \right]_{\pi }^{{5\pi }/{4}\;} \\
& =\left( -\cos \pi -\left( -\cos 0 \right) \right)-\left( -\cos \frac{5\pi }{4}-\left( -\cos \pi \right) \right) \\
& =\left( -\left( -1 \right)-\left( -1 \right) \right)-\left( -\left( -\frac{1}{\sqrt{2}} \right)-\left( -\left( -1 \right) \right) \right) \\
& =1+1-\frac{1}{\sqrt{2}}+1=3-\frac{1}{\sqrt{2}} \\
\end{align}
NOTE: a simple way to obtain the values of
\displaystyle \cos 0,
\displaystyle \cos \pi
and
\displaystyle \cos \frac{5\pi }{4}
is to draw the angles
\displaystyle 0,
\displaystyle \pi
and
\displaystyle \frac{5\pi }{4}
on a unit circle and to read off the cosine value as the
\displaystyle x
-coordinate for the corresponding point on the circle.