Lösung 1.3:3e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:3e moved to Solution 1.3:3e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
As always, a function can only have local extreme points at one of the following types of points:
-
<center> [[Image:1_3_3e-1(4).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
1. Critical points, i.e. where
-
{{NAVCONTENT_START}}
+
<math>{f}'\left( x \right)=0</math>;
-
<center> [[Image:1_3_3e-2(4).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
2. Points where the function is not differentiable;
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:1_3_3e-3(4).gif]] </center>
+
3. Endpoints of the interval of definition.
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
We investigate these three cases.
-
<center> [[Image:1_3_3e-4(4).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
1. We obtain the critical points by setting the derivative equal to zero:
 +
 
 +
 
 +
<math>\begin{align}
 +
& {f}'\left( x \right)=\left( x^{2}-x-1 \right)^{\prime }e^{x}+\left( x^{2}-x-1 \right)\left( e^{x} \right)^{\prime } \\
 +
& =\left( 2x-1 \right)e^{x}+\left( x^{2}-x-1 \right)e^{x} \\
 +
& =\left( x^{2}+x-2 \right)e^{x} \\
 +
\end{align}</math>
 +
 
 +
 
 +
This expression for the derivative can only be zero when
 +
<math>x^{2}+x-2=0</math>, because
 +
<math>e^{x}</math>
 +
differs from zero for all values of
 +
<math>x</math>.
 +
We solve the second-degree equation by completing the square:
 +
 
 +
<math>\begin{align}
 +
& \left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}-2=0 \\
 +
& =\left( x+\frac{1}{2} \right)^{2}=\frac{9}{4} \\
 +
& =x+\frac{1}{2}=\pm \frac{3}{2} \\
 +
\end{align}</math>
 +
 
 +
 
 +
i.e.
 +
<math>x=-\frac{1}{2}-\frac{3}{2}=-2</math>
 +
and
 +
<math>x=-\frac{1}{2}+\frac{3}{2}=1</math>.Both of these points lie within the region of definition,
 +
<math>-3\le x\le 3</math>
 +
 
 +
 
 +
2. The function is a polynomial
 +
<math>x^{2}-x-1</math>
 +
multiplied by the exponential function
 +
<math>e^{x}</math>, and, because both of these functions are differentiable, the product is also a differentiable function, which shows that the function is differentiable everywhere.
 +
 
 +
 
 +
3. The function's region of definition is
 +
<math>-3\le x\le 3</math>
 +
and the endpoints
 +
<math>x=-3\text{ }</math>
 +
and
 +
<math>x=3\text{ }</math>
 +
are therefore possible local extreme points.
 +
 
 +
All in all, there are four points
 +
<math>x=-3,\quad x=-2,\quad x=1</math>
 +
and
 +
<math>x=3</math>
 +
where the function possibly has local extreme points.
 +
 
 +
Now, we will write down a table of the sign of the derivative, in order to investigate the function has local extreme points.
 +
 
 +
We can factorize the derivative somewhat,
 +
 
 +
<math>{f}'\left( x \right)=\left( x^{2}+x-2 \right)e^{x}=\left( x+2 \right)\left( x-1 \right)e^{x}</math>,
 +
since
 +
<math>x^{2}+x-2</math>
 +
has zeros at
 +
<math>x=-2</math>
 +
and
 +
<math>x=1</math>. Each individual factor in the derivative has a sign that is given in the table:
 +
 
 +
TABELL
 +
 +
The sign of the derivative is the product of these signs and from the derivative's sign we decide which local extreme points we have:
 +
 
 +
TABELL
 +
 
 +
 
 +
The function has local minimum points at
 +
<math>x=-3</math>
 +
and
 +
<math>x=1</math>, and local maximum points
 +
<math>x=-2</math>
 +
and
 +
<math>x=3</math>.

Version vom 13:21, 15. Okt. 2008

As always, a function can only have local extreme points at one of the following types of points:

1. Critical points, i.e. where \displaystyle {f}'\left( x \right)=0;

2. Points where the function is not differentiable;

3. Endpoints of the interval of definition.

We investigate these three cases.

1. We obtain the critical points by setting the derivative equal to zero:


\displaystyle \begin{align} & {f}'\left( x \right)=\left( x^{2}-x-1 \right)^{\prime }e^{x}+\left( x^{2}-x-1 \right)\left( e^{x} \right)^{\prime } \\ & =\left( 2x-1 \right)e^{x}+\left( x^{2}-x-1 \right)e^{x} \\ & =\left( x^{2}+x-2 \right)e^{x} \\ \end{align}


This expression for the derivative can only be zero when \displaystyle x^{2}+x-2=0, because \displaystyle e^{x} differs from zero for all values of \displaystyle x. We solve the second-degree equation by completing the square:

\displaystyle \begin{align} & \left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}-2=0 \\ & =\left( x+\frac{1}{2} \right)^{2}=\frac{9}{4} \\ & =x+\frac{1}{2}=\pm \frac{3}{2} \\ \end{align}


i.e. \displaystyle x=-\frac{1}{2}-\frac{3}{2}=-2 and \displaystyle x=-\frac{1}{2}+\frac{3}{2}=1.Both of these points lie within the region of definition, \displaystyle -3\le x\le 3


2. The function is a polynomial \displaystyle x^{2}-x-1 multiplied by the exponential function \displaystyle e^{x}, and, because both of these functions are differentiable, the product is also a differentiable function, which shows that the function is differentiable everywhere.


3. The function's region of definition is \displaystyle -3\le x\le 3 and the endpoints \displaystyle x=-3\text{ } and \displaystyle x=3\text{ } are therefore possible local extreme points.

All in all, there are four points \displaystyle x=-3,\quad x=-2,\quad x=1 and \displaystyle x=3 where the function possibly has local extreme points.

Now, we will write down a table of the sign of the derivative, in order to investigate the function has local extreme points.

We can factorize the derivative somewhat,

\displaystyle {f}'\left( x \right)=\left( x^{2}+x-2 \right)e^{x}=\left( x+2 \right)\left( x-1 \right)e^{x}, since \displaystyle x^{2}+x-2 has zeros at \displaystyle x=-2 and \displaystyle x=1. Each individual factor in the derivative has a sign that is given in the table:

TABELL

The sign of the derivative is the product of these signs and from the derivative's sign we decide which local extreme points we have:

TABELL


The function has local minimum points at \displaystyle x=-3 and \displaystyle x=1, and local maximum points \displaystyle x=-2 and \displaystyle x=3.