Lösung 1.2:3e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
At first sight, the expression looks like “
+
At first sight, the expression looks like “''e'' raised to something” and therefore we differentiate using the chain rule,
-
<math>e</math>
+
-
raised to something” and therefore we differentiate using the chain rule:
+
 +
{{Displayed math||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} =
 +
e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}</math>}}
-
<math>\frac{d}{dx}e^{\left\{ \left. \sin x^{2} \right\} \right.}=e^{\left\{ \left. \sin x^{2} \right\} \right.}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }</math>
+
Then, we differentiate “sine of something”,
-
 
+
{{Displayed math||<math>\begin{align}
-
Then, we differentiate “sine of something”:
+
e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)'
-
 
+
&= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt]
-
 
+
&= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.}
-
<math>\begin{align}
+
\end{align}</math>}}
-
& e^{\sin x^{2}}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }=e^{\sin x^{2}}\centerdot \cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime } \\
+
-
& =e^{\sin x^{2}}\centerdot \cos x^{2}\centerdot 2x \\
+
-
\end{align}</math>
+

Version vom 13:12, 15. Okt. 2008

At first sight, the expression looks like “e raised to something” and therefore we differentiate using the chain rule,

\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} =

e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}

Then, we differentiate “sine of something”,

\displaystyle \begin{align}

e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' &= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] &= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} \end{align}