Lösung 1.2:3e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | At first sight, the expression looks like “ | + | At first sight, the expression looks like “''e'' raised to something” and therefore we differentiate using the chain rule, |
- | + | ||
- | raised to something” and therefore we differentiate using the chain rule | + | |
+ | {{Displayed math||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} = | ||
+ | e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}</math>}} | ||
- | + | Then, we differentiate “sine of something”, | |
- | + | {{Displayed math||<math>\begin{align} | |
- | + | e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' | |
- | + | &= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] | |
- | + | &= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} | |
- | <math>\begin{align} | + | \end{align}</math>}} |
- | + | ||
- | & =e^{\sin x^ | + | |
- | \end{align}</math> | + |
Version vom 13:12, 15. Okt. 2008
At first sight, the expression looks like “e raised to something” and therefore we differentiate using the chain rule,
\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} =
e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.} |
Then, we differentiate “sine of something”,
\displaystyle \begin{align}
e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' &= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] &= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} \end{align} |