Lösung 1.2:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
Zeile 1: | Zeile 1: | ||
- | The outer function in the expression is "the root of something", | + | The outer function in the expression is "the square root of something", |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } }</math>}} | ||
and differentiating with the chain rule gives | and differentiating with the chain rule gives | ||
- | + | {{Displayed math||<math>\frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\dfrac{x+1}{x-1} } } }\cdot \Bigl( \frac{x+1}{x-1}\Bigr)'\,\textrm{.}</math>}} | |
- | <math>\frac{d}{dx}\sqrt{\ | + | |
- | + | ||
We establish the inner derivative by using the quotient rule, | We establish the inner derivative by using the quotient rule, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{d}{dx}\,\sqrt{\frac{x+1}{x-1}} |
- | + | &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot\frac{(x+1)'\cdot (x-1) - (x+1)\cdot (x-1)'}{(x-1)^2}\\[5pt] | |
- | & =\frac{1}{2\sqrt{\ | + | &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{1\cdot (x-1) - (x+1)\cdot 1}{(x-1)^2}\\[5pt] |
- | & =\frac{1}{2\sqrt{\ | + | &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{-2}{(x-1)^2}\\[5pt] |
- | & =-\sqrt{\frac{x-1}{x+1} | + | &= -\sqrt{\frac{x-1}{x+1}}\cdot\frac{1}{(x-1)^2}\\[5pt] |
- | & =-\frac{1}{ | + | &= -\frac{1}{(x-1)^{3/2}\sqrt{x+1}}\,, |
- | \end{align}</math> | + | \end{align}</math>}} |
- | + | ||
where we have used the simplification | where we have used the simplification | ||
- | + | {{Displayed math||<math>\frac{\sqrt{x-1}}{(x-1)^2} | |
- | <math>\frac{\sqrt{x-1}}{ | + | = \frac{(x-1)^{1/2}}{(x-1)^2} |
+ | = (x-1)^{1/2-2} | ||
+ | = (x-1)^{-3/2} | ||
+ | = \frac{1}{(x-1)^{3/2}}\,\textrm{.}</math>}} |
Version vom 11:53, 15. Okt. 2008
The outer function in the expression is "the square root of something",
\displaystyle \sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } |
and differentiating with the chain rule gives
\displaystyle \frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\dfrac{x+1}{x-1} } } }\cdot \Bigl( \frac{x+1}{x-1}\Bigr)'\,\textrm{.} |
We establish the inner derivative by using the quotient rule,
\displaystyle \begin{align}
\frac{d}{dx}\,\sqrt{\frac{x+1}{x-1}} &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot\frac{(x+1)'\cdot (x-1) - (x+1)\cdot (x-1)'}{(x-1)^2}\\[5pt] &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{1\cdot (x-1) - (x+1)\cdot 1}{(x-1)^2}\\[5pt] &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{-2}{(x-1)^2}\\[5pt] &= -\sqrt{\frac{x-1}{x+1}}\cdot\frac{1}{(x-1)^2}\\[5pt] &= -\frac{1}{(x-1)^{3/2}\sqrt{x+1}}\,, \end{align} |
where we have used the simplification
\displaystyle \frac{\sqrt{x-1}}{(x-1)^2}
= \frac{(x-1)^{1/2}}{(x-1)^2} = (x-1)^{1/2-2} = (x-1)^{-3/2} = \frac{1}{(x-1)^{3/2}}\,\textrm{.} |