Lösung 1.3:1d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:1d moved to Solution 1.3:1d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The function has critical points at the points
-
<center> [[Image:1_3_1d-1(2).gif]] </center>
+
<math>x=a</math>
-
{{NAVCONTENT_STOP}}
+
and
-
{{NAVCONTENT_START}}
+
<math>x=d</math>, (see figure below), i.e. the derivatives are equal to zero, but note that
-
<center> [[Image:1_3_1d-2(2).gif]] </center>
+
<math>x=b</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>x=c</math>
 +
are not critical points (the derivative is not even defined at these points).
[[Image:1_3_1_d1.gif|center]]
[[Image:1_3_1_d1.gif|center]]
 +
 +
The function has local minimum points at
 +
<math>x=a</math>,
 +
<math>x=c</math>
 +
and the right endpoint of the interval of definition and the local maximum points at the left endpoint,
 +
<math>x=b</math>, and
 +
<math>x=d</math>. Of these,
 +
<math>x=b</math>
 +
is the global maximum and
 +
<math>x=a</math>
 +
is the global minimum.
 +
 +
Between the local extreme points, the function is strictly increasing or decreasing.
 +
 +
[[Image:1_3_1_d2.gif|center]]
[[Image:1_3_1_d2.gif|center]]

Version vom 09:29, 15. Okt. 2008

The function has critical points at the points \displaystyle x=a and \displaystyle x=d, (see figure below), i.e. the derivatives are equal to zero, but note that \displaystyle x=b and \displaystyle x=c are not critical points (the derivative is not even defined at these points).

The function has local minimum points at \displaystyle x=a, \displaystyle x=c and the right endpoint of the interval of definition and the local maximum points at the left endpoint, \displaystyle x=b, and \displaystyle x=d. Of these, \displaystyle x=b is the global maximum and \displaystyle x=a is the global minimum.

Between the local extreme points, the function is strictly increasing or decreasing.