Lösung 1.2:2b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | The whole expression consists of two parts: the outer part, " | + | The whole expression consists of two parts: the outer part, "''e'' raised to something", |
| - | + | ||
| - | raised to something", | + | |
| + | {{Displayed math||<math>e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,,</math>}} | ||
| - | <math> | + | where "something" is the inner part <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x</math>. |
| + | The derivative is calculated according to the chain rule by differentiating <math>e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}</math> with respect to <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}</math> and then multiplying by the inner derivative <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)'</math>, i.e. | ||
| - | + | {{Displayed math||<math>\frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.}</math>}} | |
| - | <math>\ | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | The inner part is an ordinary polynomial which we differentiate directly, | ||
| - | <math>\frac{d}{dx}e^{ | + | {{Displayed math||<math>\frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.}</math>}} |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
Version vom 08:02, 15. Okt. 2008
The whole expression consists of two parts: the outer part, "e raised to something",
| \displaystyle e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,, |
where "something" is the inner part \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x.
The derivative is calculated according to the chain rule by differentiating \displaystyle e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}} with respect to \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} and then multiplying by the inner derivative \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)', i.e.
| \displaystyle \frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.} |
The inner part is an ordinary polynomial which we differentiate directly,
| \displaystyle \frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.} |
