Lösung 1.2:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.2:1c moved to Solution 1.2:1c: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | The expression is a quotient of two polynomials, | + | The expression is a quotient of two polynomials, <math>x^2+1</math> and <math>x+1</math>, and we therefore use the quotient rule for differentiation, |
- | <math>x^ | + | |
- | and | + | |
- | <math>x+1</math>, and we therefore use the quotient rule for differentiation | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(\frac{x^2+1}{x+1}\Bigr)' | ||
+ | &= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt] | ||
+ | &= \frac{2x\cdot (x+1) - (x^2+1)\cdot 1}{(x+1)^2}\\[5pt] | ||
+ | &= \frac{2x^2+2x-x^2-1}{(x+1)^2}\\[5pt] | ||
+ | &= \frac{x^2+2x-1}{(x+1)^2}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math>\begin{align} | ||
- | & \left( \frac{x^{2}+1}{x+1} \right)^{\prime }=\frac{\left( x^{2}+1 \right)^{\prime }\centerdot \left( x+1 \right)-\left( x^{2}+1 \right)\centerdot \left( x+1 \right)^{\prime }}{\left( x+1 \right)^{2}} \\ | ||
- | & \\ | ||
- | & =\frac{2x\centerdot \left( x+1 \right)-\left( x^{2}+1 \right)\centerdot 1}{\left( x+1 \right)^{2}} \\ | ||
- | & \\ | ||
- | & =\frac{2x^{2}+2x-x^{2}-1}{\left( x+1 \right)^{2}}=\frac{x^{2}+2x-1}{\left( x+1 \right)^{2}} \\ | ||
- | \end{align}</math> | ||
+ | Note: It is possible to rewrite the numerator by completing the square, | ||
- | + | {{Displayed math||<math>x^2+2x-1 = (x+1)^{2} - 1^2 - 1 = (x+1)^2 - 2</math>}} | |
- | + | ||
- | + | ||
- | <math>x^ | + | |
- | + | ||
and then the answer can be written as | and then the answer can be written as | ||
- | + | {{Displayed math||<math>\frac{x^2+2x-1}{(x+1)^2} = \frac{(x+1)^2-2}{(x+1)^2} = 1-\frac{2}{(x+1)^2}\,\textrm{.}</math>}} | |
- | + | ||
- | <math>\frac{x^ | + |
Version vom 13:51, 14. Okt. 2008
The expression is a quotient of two polynomials, \displaystyle x^2+1 and \displaystyle x+1, and we therefore use the quotient rule for differentiation,
\displaystyle \begin{align}
\Bigl(\frac{x^2+1}{x+1}\Bigr)' &= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt] &= \frac{2x\cdot (x+1) - (x^2+1)\cdot 1}{(x+1)^2}\\[5pt] &= \frac{2x^2+2x-x^2-1}{(x+1)^2}\\[5pt] &= \frac{x^2+2x-1}{(x+1)^2}\,\textrm{.} \end{align} |
Note: It is possible to rewrite the numerator by completing the square,
\displaystyle x^2+2x-1 = (x+1)^{2} - 1^2 - 1 = (x+1)^2 - 2 |
and then the answer can be written as
\displaystyle \frac{x^2+2x-1}{(x+1)^2} = \frac{(x+1)^2-2}{(x+1)^2} = 1-\frac{2}{(x+1)^2}\,\textrm{.} |