Lösung 1.2:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:1b moved to Solution 1.2:1b: Robot: moved page)
K
Zeile 1: Zeile 1:
-
We use the product rule with
+
We use the product rule with <math>x^2</math> and <math>\ln x</math> as factors,
-
<math>x^{2}</math>
+
-
and
+
-
<math>\ln x</math>
+
-
as factors:
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\bigl(x^{2}\ln x\bigr)'
-
& \left( x^{2}\ln x \right)^{\prime }=\left( x^{2} \right)^{\prime }\ln x+x^{2}\left( \ln x \right)^{\prime } \\
+
&= \bigl(x^2\bigr)'\,\ln x + x^2\,(\ln x)'\\[5pt]
-
& \\
+
&= 2x\cdot\ln x + x^2\cdot\frac{1}{x}\\[5pt]
-
& =2x\centerdot \ln x+x^{2}\centerdot \frac{1}{x}=2x\ln x+x \\
+
&= 2x\ln x + x\,\textrm{.}
-
\end{align}</math>
+
\end{align}</math>}}

Version vom 13:44, 14. Okt. 2008

We use the product rule with \displaystyle x^2 and \displaystyle \ln x as factors,

\displaystyle \begin{align}

\bigl(x^{2}\ln x\bigr)' &= \bigl(x^2\bigr)'\,\ln x + x^2\,(\ln x)'\\[5pt] &= 2x\cdot\ln x + x^2\cdot\frac{1}{x}\\[5pt] &= 2x\ln x + x\,\textrm{.} \end{align}