Lösung 1.2:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.2:1b moved to Solution 1.2:1b: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | We use the product rule with | + | We use the product rule with <math>x^2</math> and <math>\ln x</math> as factors, |
- | <math>x^ | + | |
- | and | + | |
- | <math>\ln x</math> | + | |
- | as factors | + | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \bigl(x^{2}\ln x\bigr)' |
- | + | &= \bigl(x^2\bigr)'\,\ln x + x^2\,(\ln x)'\\[5pt] | |
- | + | &= 2x\cdot\ln x + x^2\cdot\frac{1}{x}\\[5pt] | |
- | & =2x\ | + | &= 2x\ln x + x\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
Version vom 13:44, 14. Okt. 2008
We use the product rule with \displaystyle x^2 and \displaystyle \ln x as factors,
\displaystyle \begin{align}
\bigl(x^{2}\ln x\bigr)' &= \bigl(x^2\bigr)'\,\ln x + x^2\,(\ln x)'\\[5pt] &= 2x\cdot\ln x + x^2\cdot\frac{1}{x}\\[5pt] &= 2x\ln x + x\,\textrm{.} \end{align} |