Lösung 1.1:2b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | The expression is a sum of two terms which we differentiate one by one | + | The expression is a sum of two terms which we differentiate one by one, | 
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | f^{\,\prime}(x) | 
| - | + | &= \frac{d}{dx}\,\bigl(\cos x-\sin x\bigr)\\[5pt]  | |
| - | & =\frac{d}{dx}\cos x-\frac{d}{dx}\sin x=-\sin x-\cos x \\  | + | &= \frac{d}{dx}\,\cos x - \frac{d}{dx}\,\sin x\\[5pt] | 
| - | \end{align}</math> | + | &= -\sin x-\cos x\,\textrm{.}  | 
| + | \end{align}</math>}} | ||
Version vom 11:47, 14. Okt. 2008
The expression is a sum of two terms which we differentiate one by one,
| \displaystyle \begin{align} f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(\cos x-\sin x\bigr)\\[5pt] &= \frac{d}{dx}\,\cos x - \frac{d}{dx}\,\sin x\\[5pt] &= -\sin x-\cos x\,\textrm{.} \end{align} | 
 
		  