Lösung 1.1:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The expression is a sum of two terms which we differentiate one by one:
+
The expression is a sum of two terms which we differentiate one by one,
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
f^{\,\prime}(x)
-
& {f}'\left( x \right)=\frac{d}{dx}\left( \cos x-\sin x \right) \\
+
&= \frac{d}{dx}\,\bigl(\cos x-\sin x\bigr)\\[5pt]
-
& =\frac{d}{dx}\cos x-\frac{d}{dx}\sin x=-\sin x-\cos x \\
+
&= \frac{d}{dx}\,\cos x - \frac{d}{dx}\,\sin x\\[5pt]
-
\end{align}</math>
+
&= -\sin x-\cos x\,\textrm{.}
 +
\end{align}</math>}}

Version vom 11:47, 14. Okt. 2008

The expression is a sum of two terms which we differentiate one by one,

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(\cos x-\sin x\bigr)\\[5pt] &= \frac{d}{dx}\,\cos x - \frac{d}{dx}\,\sin x\\[5pt] &= -\sin x-\cos x\,\textrm{.} \end{align}