Lösung 3.2:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.2:1b moved to Solution 3.2:1b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | We can easily calculate <math>z+u</math> and <math>z-u</math>, |
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
+ | <math>\begin{align}z+u&=2+i+(-1-2i)=2-1+(1-2)i=1-i,\\ | ||
+ | z-u&=2+i-(-1-2i)=2+1+(1+2)i=3+3i,\end{align}</math> | ||
+ | |||
+ | and then mark them on the complex plane. | ||
+ | |||
+ | An alternative is to view <math>z</math> and <math>u</math> as vectors and <math>z+u</math> as a vector addition of <math>z</math> and <math>u</math>. | ||
[[Image:3_2_1_b1.gif|center]] | [[Image:3_2_1_b1.gif|center]] | ||
+ | |||
+ | We can either view the vector subtraction <math>z-u</math> as <math>z+(-u)</math>, | ||
[[Image:3_2_1_b2.gif|center]] | [[Image:3_2_1_b2.gif|center]] | ||
+ | |||
+ | or interpret <math>z-u</math> from the vector relation | ||
+ | |||
+ | <math>z=(z-u)+u</math> | ||
+ | |||
+ | i.e. <math>z-u</math> is the vector we add to <math>u</math> to arrive at <math>z</math>. | ||
[[Image:3_2_1_b3.gif|center]] | [[Image:3_2_1_b3.gif|center]] | ||
+ | |||
+ | {{NAVCONTENT_STOP}} |
Version vom 10:30, 3. Okt. 2008
We can easily calculate \displaystyle z+u and \displaystyle z-u,
\displaystyle \begin{align}z+u&=2+i+(-1-2i)=2-1+(1-2)i=1-i,\\ z-u&=2+i-(-1-2i)=2+1+(1+2)i=3+3i,\end{align}
and then mark them on the complex plane.
An alternative is to view \displaystyle z and \displaystyle u as vectors and \displaystyle z+u as a vector addition of \displaystyle z and \displaystyle u.
We can either view the vector subtraction \displaystyle z-u as \displaystyle z+(-u),
or interpret \displaystyle z-u from the vector relation
\displaystyle z=(z-u)+u
i.e. \displaystyle z-u is the vector we add to \displaystyle u to arrive at \displaystyle z.