Lösung 3.1:4f
Aus Online Mathematik Brückenkurs 2
Zeile 11: | Zeile 11: | ||
- | <math>(1+i)(x-iy)+i(x+iy) | + | <math>(1+i)(x-iy)+i(x+iy)</math><math> |
\begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\ | \begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\ | ||
&=x-iy+ix+y+ix-y\\ | &=x-iy+ix+y+ix-y\\ | ||
Zeile 26: | Zeile 26: | ||
- | <math>\begin{cases}x=3\\2x-y=5\end{cases}</math> | + | <math>\begin{cases}x=3\\2x-y=5.\end{cases}</math> |
Version vom 11:46, 23. Sep. 2008
Because the equation contains both \displaystyle z and \displaystyle \bar{z}, we cannot use \displaystyle z (or \displaystyle \bar{z}) alone as an unknown, so we are forced to set
\displaystyle z=x+iy
and use the real part \displaystyle x and the imaginary part \displaystyle y as unknowns.
With this approach, the left-hand side of the equation becomes
\displaystyle (1+i)(x-iy)+i(x+iy)\displaystyle
\begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\
&=x-iy+ix+y+ix-y\\
&=x+(2x-y)i\end{align}
and the whole equation becomes
\displaystyle x+(2x-y)i=3+5i.
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
\displaystyle \begin{cases}x=3\\2x-y=5.\end{cases}
This gives \displaystyle x=3 and \displaystyle y=2x-5=2\cdot 3-5=1. Thus, the equation has the solution \displaystyle z=3+i.
A quick check shows that \displaystyle z=3+i satisfies the equation in the exercise:
\displaystyle \begin{align}LHS &= (1+i)\bar{z}+iz=(1+i)(3-i)+i(3+i)\\
&= 3-i+3i+1+3i-1 = 3+5i = RHS\end{align}