Lösung 3.1:4f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:4f moved to Solution 3.1:4f: Robot: moved page)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:3_1_4f-1(2).gif]] </center>
+
Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_1_4f-2(2).gif]] </center>
+
<math>z=x+iy</math>
 +
 
 +
 
 +
and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns.
 +
 
 +
With this approach, the left-hand side of the equation becomes
 +
 
 +
 
 +
<math>(1+i)(x-iy)+i(x+iy)
 +
\begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\
 +
&=x-iy+ix+y+ix-y\\
 +
&=x+(2x-y)i\end{align}</math>
 +
 
 +
 
 +
and the whole equation becomes
 +
 
 +
 
 +
<math>x+(2x-y)i=3+5i</math>.
 +
 
 +
 
 +
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
 +
 
 +
 
 +
<math>\begin{cases}x=3\\2x-y=5\end{cases}</math>.
 +
 
 +
 
 +
This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>.
 +
 
 +
A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise:
 +
 
 +
 
 +
<math>\begin{align}LHS &= (1+i)\bar{z}+iz=(1+i)(3-i)+i(3+i)\\
 +
&= 3-i+3i+1+3i-1 = 3+5i = RHS\end{align}</math>
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 11:45, 23. Sep. 2008