Lösung 3.1:4e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:4e moved to Solution 3.1:4e: Robot: moved page)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:3_1_4e-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
If we multiply both sides by z+i, we avoid having z in the denominator:
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_1_4e-2(2).gif]] </center>
+
 
 +
<math>iz+1=(3+i)(z+i).</math>
 +
 
 +
 
 +
At the same time, this means that we are now working with a new equation which is not necessarily entirely equivalent with the original equation. Should the new equation show itself to have z=-i as a solution, then we must ignore that solution, because our initial equation cannot possibly have <math>z=-i</math> as a solution (the denominator of the left-hand side becomes zero).
 +
 
 +
We expand the right-hand side in the new equation,
 +
 
 +
 
 +
<math>iz+1=3z+3i+iz-1</math>
 +
 
 +
 
 +
and move all the terms in z over to the left-hand side and the constants to the right-hand side:
 +
 
 +
 
 +
<math>\begin{align}iz-3z-iz &= 3i-1-1,\\
 +
-3z &= -2+3i.\end{align}</math>
 +
 
 +
 
 +
Then, we obtain
 +
 
 +
 
 +
<math>z=\frac{-2+3i}{-3}=\frac{2}{3}-i.</math>
 +
 
 +
It is a little troublesome to divide two complex numbers, so we will therefore not check whether <math>z=\frac{2}{3}-i</math> is a solution to the original equation, but satisfy ourselves with substituting into the equation <math>iz+1=(3+i)(z+i)</math>:
 +
 
 +
 
 +
<math>\begin{align}LHS &=iz+1=i(\frac{2}{3}-i)+1=\frac{2}{3}\cdot i+1+1=2+\frac{2}{3}i,\\
 +
RHS &= (3+i)(z+i)=(3+i)(\frac{2}{3}-i+i)=(3+i)\frac{2}{3}=2+\frac{2}{3}i.\end{align}</math>
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 11:35, 23. Sep. 2008