Lösung 3.1:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
In the equation, z occurs only as and, to begin with, we can therefore treatas unknown.
+
In the equation, <math>z</math> occurs only as <math>\bar{z}</math> and, to begin with, we can therefore treat <math>\bar{z}</math> as unknown.
-
Divide both sides by 2+i,
+
Divide both sides by <math>2+i</math>,
 +
 
 +
 
 +
<math>\bar{z}=\frac{1+i}{2+i}</math>
-
EQ1
 
and calculate the quotient on the right-hand side by multiplying top and bottom by the complex conjugate of the numerator:
and calculate the quotient on the right-hand side by multiplying top and bottom by the complex conjugate of the numerator:
-
EQ2
 
-
This means that .
+
<math>\begin{align}\bar{z}&=\frac{(1+i)(2-i)}{(2+i)(2-i)}=\frac{1\cdot 2-1\cdot i +i \cdot 2 - i\cdot i}{2^2-i^2}\\
 +
&=\frac{2-i+2i+1}{4+1}=\frac{3+i}{5}=\frac{3}{5}+\frac{1}{5}i.\end{align}</math>
 +
 
 +
 
 +
This means that <math>z=\frac{3}{5}-\frac{1}{5}i.</math>
-
We check that satisfies the original equation:
+
We check that <math>z=\frac{3}{5}-\frac{1}{5}i</math> satisfies the original equation:
-
EQ3
 
 +
<math>\begin{align}LHS &= (2+i)\bar{z} = (2+i)\overline{(\frac{3}{5}-\frac{1}{5}i)}=(2+i)(\frac{3}{5}+\frac{1}{5}i)\\
 +
&=2\cdot\frac{3}{5}+2\cdot\frac{1}{5}i+i\cdot\frac{3}{5}+i\cdot\frac{1}{5}i=\frac{6}{5}+\frac{2}{5}i+\frac{3}{5}i-\frac{1}{5}\\
 +
&=\frac{6-1}{5}+\frac{2+3}{5}i=1+i= RHS\end{align}</math>
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 11:03, 23. Sep. 2008