Lösung 3.1:4c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:4c moved to Solution 3.1:4c: Robot: moved page)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:3_1_4c.gif]] </center>
+
If we subtract <math>2z</math> from both sides,
 +
 
 +
 
 +
<math>iz+2-2z=-3</math>
 +
 
 +
 
 +
and then subtract <math>2</math> from both sides, we have <math>z</math> terms left only on the left-hand side,
 +
 
 +
 
 +
<math>iz-2z=-3-2</math>
 +
 
 +
 
 +
After taking out a factor <math>z</math> from the left-hand side,
 +
 
 +
 
 +
<math>(i-2)z=-5</math>
 +
 
 +
 
 +
we obtain, after dividing by <math>-2+i</math>,
 +
 
 +
 
 +
<math>\begin{align}z&=\frac{-5}{-2+i}=\frac{-5(-2-i)}{(-2+i)(-2-i)}=\frac{(-5)\cdot(-2)-5\cdot(-i)}{(-2)^2-i^2}\\
 +
&=\frac{10+5i}{4+1}=\frac{10+5i}{5}=2+i.\end{align}</math>
 +
 
 +
 
 +
A quick check shows that <math>z=2+i</math> satisfies the original equation
 +
 
 +
 
 +
<math>\begin{align}LHS &= iz+2=i(2+i)+2=2i-1+2=1+2i\\
 +
RHS &= 2z-3 = 2(2+i)-3=4+2i-3=1+2i.\end{align}</math>
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 10:51, 23. Sep. 2008