Lösung 3.1:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:2a moved to Solution 3.1:2a: Robot: moved page)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:3_1_2a-1(2).gif]] </center>
+
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator:
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\frac{1-i}{1-i}.</math>
-
<center> [[Image:3_1_2a-2(2).gif]] </center>
+
{{NAVCONTENT_STEP}}
 +
Then, the conjugate rule gives that the new denominator is a real number
 +
 
 +
<math>\begin{align}\frac{3-2i}{1+i}\frac{1-i}{1-i}&=\frac{(3-2i)(1-i)}{(1+i)(1-i)}\\
 +
&=\frac{(3-2i)(1-i)}{1^2-i^2}\\
 +
&=\frac{(3-2i)(1-i)}{1+1}\\
 +
&=\frac{(3-2i)(1-i)}{2}\end{align}</math>
 +
{{NAVCONTENT_STEP}}
 +
All that remains is to multiply together what is in the numerator:
 +
 
 +
 
 +
<math>\begin{align}\frac{(3-2i)(1-i)}{2}&=\frac{3\cdot 1 -3\cdot i - 1\cdot 2i -2i\cdot(-i)}{2}\\
 +
&=\frac{3-3i-2i+2i^2}{2}\\
 +
&=\frac{3-(3+2)i+2(-1)}{2}\\
 +
&=\frac{1-5i}{2}\\
 +
&=\frac{1}{2}-\frac{5}{2}i.\end{align}</math>
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 09:39, 23. Sep. 2008