3.1 Rechnungen mit komplexen Zahlen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
K (Robot: Automated text replacement (-{{Fristående formel +{{Displayed math))
Zeile 28: Zeile 28:
The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers are not enough to be solutions of all possible algebraic equations, in other words. there are equations of the type
The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers are not enough to be solutions of all possible algebraic equations, in other words. there are equations of the type
-
{{Fristående formel||<math>a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0</math>}}
+
{{Displayed math||<math>a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0</math>}}
which do not have a solution among the real numbers. For example, the equation <math>x^2+1=0</math> has no real solution, since no real number satisfies <math>x^2=-1</math>. However, if we can imagine <math>\sqrt{-1}</math> as the number that solves the equation <math>x^2=-1</math> and manipulate <math>\sqrt{-1}</math> as any other number, it turns out that every algebraic equation has solutions.
which do not have a solution among the real numbers. For example, the equation <math>x^2+1=0</math> has no real solution, since no real number satisfies <math>x^2=-1</math>. However, if we can imagine <math>\sqrt{-1}</math> as the number that solves the equation <math>x^2=-1</math> and manipulate <math>\sqrt{-1}</math> as any other number, it turns out that every algebraic equation has solutions.
Zeile 48: Zeile 48:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>z=a+bi\,\mbox{,}</math>}}
+
{{Displayed math||<math>z=a+bi\,\mbox{,}</math>}}
</div>
</div>
Zeile 58: Zeile 58:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*}a &= \mathop{\rm Re} z\,\mbox{,}\\ b&=\mathop{\rm Im} z\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*}a &= \mathop{\rm Re} z\,\mbox{,}\\ b&=\mathop{\rm Im} z\,\mbox{.}\end{align*}</math>}}
</div>
</div>
Zeile 70: Zeile 70:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*} z+w &= a+bi+c+di = a+c+(b+d)i\,\mbox{,}\\ z-w &= a+bi-(c+di) = a-c+(b-d)i\,\mbox{.}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z+w &= a+bi+c+di = a+c+(b+d)i\,\mbox{,}\\ z-w &= a+bi-(c+di) = a-c+(b-d)i\,\mbox{.}\end{align*}</math>}}
</div>
</div>
Zeile 90: Zeile 90:
Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that <math>i^2=-1</math>. Generally one has for two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> that
Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that <math>i^2=-1</math>. Generally one has for two complex numbers <math>z=a+bi</math> and <math>w=c+di</math> that
-
<div class="regel">{{Fristående formel||<math>z\cdot w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.}</math>}}
+
<div class="regel">{{Displayed math||<math>z\cdot w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.}</math>}}
</div>
</div>
Zeile 113: Zeile 113:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*} z+\overline{z} &= a + bi + a - bi = 2a = 2\, \mathop{\rm Re} z\,\mbox{,}\\ z-\overline{z} &= a + bi - (a - bi) = 2bi = 2i\, \mathop{\rm Im} z\,\mbox{,}\end{align*}</math>}}
+
{{Displayed math||<math>\begin{align*} z+\overline{z} &= a + bi + a - bi = 2a = 2\, \mathop{\rm Re} z\,\mbox{,}\\ z-\overline{z} &= a + bi - (a - bi) = 2bi = 2i\, \mathop{\rm Im} z\,\mbox{,}\end{align*}</math>}}
</div>
</div>
Zeile 119: Zeile 119:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>z\cdot \bar z = (a+bi)(a-bi)=a^2-(bi)^2=a^2-b^2i^2=a^2+b^2\,\mbox{,}</math>}}
+
{{Displayed math||<math>z\cdot \bar z = (a+bi)(a-bi)=a^2-(bi)^2=a^2-b^2i^2=a^2+b^2\,\mbox{,}</math>}}
</div>
</div>
Zeile 162: Zeile 162:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}\,i</math>}}
+
{{Displayed math||<math>\frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}\,i</math>}}
</div>
</div>
Zeile 214: Zeile 214:
Multiply the numerator and denominator with the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts.
Multiply the numerator and denominator with the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts.
-
{{Fristående formel||<math>\frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2}</math>}}
+
{{Displayed math||<math>\frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2}</math>}}
If the expression is to be real , the imaginary part must be 0, ie.
If the expression is to be real , the imaginary part must be 0, ie.
-
{{Fristående formel||<math>2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.}</math>}}
+
{{Displayed math||<math>2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.}</math>}}
</div>
</div>
Zeile 235: Zeile 235:
<br/>
<br/>
Collect all <math>z</math> on the left-hand side by subtracting <math>z</math> from both sides
Collect all <math>z</math> on the left-hand side by subtracting <math>z</math> from both sides
-
{{Fristående formel||<math>2z+1-i = -3+7i</math>}} and now subtract <math>1-i</math>
+
{{Displayed math||<math>2z+1-i = -3+7i</math>}} and now subtract <math>1-i</math>
-
{{Fristående formel||<math>2z = -4+8i\,\mbox{.}</math>}}
+
{{Displayed math||<math>2z = -4+8i\,\mbox{.}</math>}}
This gives that <math>\ z=\frac{-4+8i}{2}=-2+4i\,\mbox{.}</math></li>
This gives that <math>\ z=\frac{-4+8i}{2}=-2+4i\,\mbox{.}</math></li>
Zeile 243: Zeile 243:
<br/>
<br/>
Divide both sides by <math>-1-i</math> in order to obtain <math>z</math>
Divide both sides by <math>-1-i</math> in order to obtain <math>z</math>
-
{{Fristående formel||<math>z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.}</math>}}</li>
+
{{Displayed math||<math>z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.}</math>}}</li>
<li> Solve the equation <math>3iz-2i=1-z</math>.
<li> Solve the equation <math>3iz-2i=1-z</math>.
Zeile 249: Zeile 249:
<br/>
<br/>
Adding <math>z</math> and <math>2i</math> to both sides gives
Adding <math>z</math> and <math>2i</math> to both sides gives
-
{{Fristående formel||<math>3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.}</math>}}
+
{{Displayed math||<math>3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.}</math>}}
This gives
This gives
-
{{Fristående formel||<math>z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.}</math>}}</li>
+
{{Displayed math||<math>z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.}</math>}}</li>
<li> Solve the equation <math>2z+1-i=\bar z +3 + 2i</math>.
<li> Solve the equation <math>2z+1-i=\bar z +3 + 2i</math>.
<br/>
<br/>
<br/>
<br/>
-
The equation contains both <math>z</math> as well as <math>\overline{z}</math> and therefore we assume <math>z</math> to be <math>z=a+ib</math> and solve the equation for <math>a</math> and <math>b</math> by equating the real and imaginary parts of both sides {{Fristående formel||<math>2(a+bi)+1-i=(a-bi)+3+2i</math>}}
+
The equation contains both <math>z</math> as well as <math>\overline{z}</math> and therefore we assume <math>z</math> to be <math>z=a+ib</math> and solve the equation for <math>a</math> and <math>b</math> by equating the real and imaginary parts of both sides {{Displayed math||<math>2(a+bi)+1-i=(a-bi)+3+2i</math>}}
i.e.
i.e.
-
{{Fristående formel||<math>(2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,}</math>}}
+
{{Displayed math||<math>(2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,}</math>}}
which gives
which gives
-
{{Fristående formel||<math>\left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}</math>}}
+
{{Displayed math||<math>\left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}</math>}}
The answer is therefore, <math>z=2+i</math>.</li>
The answer is therefore, <math>z=2+i</math>.</li>

Version vom 08:25, 17. Sep. 2008

       Theory          Exercises      

Contents:

  • Real and imaginary part
  • Addition and subtraction of complex numbers
  • Complex conjugate
  • Multiplication and division of complex numbers

Learning outcomes:

After this section, you will have learned to:

  • Simplify expressions that are constructed using complex numbers and the four arithmetic operations.
  • Solve first order complex number equations and simplify the answer.


Introduction

The real numbers represent a complete set of numbers in the sense that they "fill" the real-number axis. Despite this, the real numbers are not enough to be solutions of all possible algebraic equations, in other words. there are equations of the type

\displaystyle a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0

which do not have a solution among the real numbers. For example, the equation \displaystyle x^2+1=0 has no real solution, since no real number satisfies \displaystyle x^2=-1. However, if we can imagine \displaystyle \sqrt{-1} as the number that solves the equation \displaystyle x^2=-1 and manipulate \displaystyle \sqrt{-1} as any other number, it turns out that every algebraic equation has solutions. The number \displaystyle \sqrt{-1} however is not a real number, we cannot go out into the world and measure \displaystyle \sqrt{-1} anywhere, or find something that is numerically \displaystyle \sqrt{-1}, but we can still have great use of this number in many real contexts.


Example 1

If we would like to find out the sum of the roots (solutions) of the equation \displaystyle x^2-2x+2=0 we can first obtain the roots \displaystyle x_1=1+\sqrt{-1} and \displaystyle x_2=1-\sqrt{-1}. These roots contain the non-real number \displaystyle \sqrt{-1}. If we allow ourselves to do calculations containing \displaystyle \sqrt{-1} we see that the sum of \displaystyle x_1 and \displaystyle x_2 turns out to be \displaystyle 1+\sqrt{-1} + 1-\sqrt{-1} =2, which certainly is a real number.

In order to solve our problem we had to use a number that was not real in order to arrive at the real number solution.


Definition of complex numbers

One introduces the imaginary unit \displaystyle i=\sqrt{-1} and define a complex number as an object that can be written in the form

\displaystyle z=a+bi\,\mbox{,}

where \displaystyle a and \displaystyle b are real numbers, and \displaystyle i satisfies \displaystyle i^2=-1.

If \displaystyle a = 0 then the number is "purely imaginary". If \displaystyle b = 0 the number is real. We can see that the real numbers are a subset of the complex numbers. The set of complex numbers is designated by C.

For an arbitrary complex number one often uses the symbol \displaystyle z. If \displaystyle z=a+bi, where \displaystyle a and \displaystyle b are real, then \displaystyle a is the real part and \displaystyle b the imaginary part of \displaystyle z. One uses the following notation:

\displaystyle \begin{align*}a &= \mathop{\rm Re} z\,\mbox{,}\\ b&=\mathop{\rm Im} z\,\mbox{.}\end{align*}

When one calculates with complex numbers one treats them in principle like real numbers, but keeps track of the fact that \displaystyle i^2=-1.


Addition and subtraction

To add or subtract complex numbers one adds (subtracts) the real and imaginary parts separately. If \displaystyle z=a+bi and \displaystyle w=c+di are two complex numbers then,

\displaystyle \begin{align*} z+w &= a+bi+c+di = a+c+(b+d)i\,\mbox{,}\\ z-w &= a+bi-(c+di) = a-c+(b-d)i\,\mbox{.}\end{align*}

Example 2

  1. \displaystyle (3-5i)+(-4+i)=-1-4i
  2. \displaystyle \bigl(\tfrac{1}{2}+2i\bigr)-\bigl(\tfrac{1}{6}+3i\bigr) = \tfrac{1}{3}-i
  3. \displaystyle \frac{3+2i}{5}-\frac{3-i}{2} = \frac{6+4i}{10}-\frac{15-5i}{10} = \frac{-9+9i}{10} = -0\textrm{.}9 + 0\textrm{.}9i


Multiplication

Complex numbers are multiplied in the same way as ordinary real numbers or algebraic expressions, with the extra condition that \displaystyle i^2=-1. Generally one has for two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di that

\displaystyle z\cdot w=(a+bi)(c+di)=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\,\mbox{.}

Example 3

  1. \displaystyle 3(4-i)=12-3i
  2. \displaystyle 2i(3-5i)=6i-10i^2=10+6i
  3. \displaystyle (1+i)(2+3i)=2+3i+2i+3i^2=-1+5i
  4. \displaystyle (3+2i)(3-2i)=3^2-(2i)^2=9-4i^2=13
  5. \displaystyle (3+i)^2=3^2+2\cdot3i+i^2=8+6i
  6. \displaystyle i^{12}=(i^2)^6=(-1)^6=1
  7. \displaystyle i^{23}=i^{22}\cdot i=(i^2)^{11}\cdot i=(-1)^{11}i=-i


Complex conjugate

If \displaystyle z=a+bi then \displaystyle \overline{z} = a-bi is called the complex conjugate of \displaystyle z (the opposite is also true, that \displaystyle z is conjugate to \displaystyle \overline{z}). One obtains the relationships

\displaystyle \begin{align*} z+\overline{z} &= a + bi + a - bi = 2a = 2\, \mathop{\rm Re} z\,\mbox{,}\\ z-\overline{z} &= a + bi - (a - bi) = 2bi = 2i\, \mathop{\rm Im} z\,\mbox{,}\end{align*}

but most importantly, using the difference of two squares rule, one obtains

\displaystyle z\cdot \bar z = (a+bi)(a-bi)=a^2-(bi)^2=a^2-b^2i^2=a^2+b^2\,\mbox{,}

i.e. that the product of a complex number and its conjugate is always real.


Example 4

  1. \displaystyle z=5+i\qquad then \displaystyle \quad\overline{z}=5-i\,.
  2. \displaystyle z=-3-2i\qquad then \displaystyle \quad\overline{z} =-3+2i\,.
  3. \displaystyle z=17\qquad then \displaystyle \quad\overline{z} =17\,.
  4. \displaystyle z=i\qquad then \displaystyle \quad\overline{z} =-i\,.
  5. \displaystyle z=-5i\qquad then \displaystyle \quad\overline{z} =5i\,.

Example 5

  1. If \displaystyle z=4+3i one has
    • \displaystyle z+\overline{z} = 4 + 3i + 4 -3i = 8
    • \displaystyle z-\overline{z} = 6i
    • \displaystyle z \cdot \overline{z} = 4^2-(3i)^2=16+9=25
  2. If for \displaystyle z one has \displaystyle \mathop{\rm Re} z=-2 and \displaystyle \mathop{\rm Im} z=1, one gets
    • \displaystyle z+\overline{z} = 2\,\mathop{\rm Re} z = -4
    • \displaystyle z-\overline{z} = 2i\,\mathop{\rm Im} z = 2i
    • \displaystyle z\cdot \overline{z} = (-2)^2+1^2=5


Division

For the division of two complex numbers one multiplies the numerator and denominator with the complex conjugate of the denominator thus getting a denominator which is a real number. Thereafter, both the real and imaginary parts of the numerator is divided by this number (the new denominator). In general, if \displaystyle z=a+bi and \displaystyle w=c+di:

\displaystyle \frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}\,i

Example 6

  1. \displaystyle \quad\frac{4+2i}{1+i} = \frac{(4+2i)(1-i)}{(1+i)(1-i)} = \frac{4-4i+2i-2i^2}{1-i^2} = \frac{6-2i}{2}=3-i
  2. \displaystyle \quad\frac{25}{3-4i} = \frac{25(3+4i)}{(3-4i)(3+4i)} = \frac{25(3+4i)}{3^2-16i^2} = \frac{25(3+4i)}{25} = 3+4i
  3. \displaystyle \quad\frac{3-2i}{i} = \frac{(3-2i)(-i)}{i(-i)} = \frac{-3i+2i^2}{-i^2} = \frac{-2-3i}{1} = -2-3i

Example 7

  1. \displaystyle \quad\frac{2}{2-i}-\frac{i}{1+i} = \frac{2(2+i)}{(2-i)(2+i)} - \frac{i(1-i)}{(1+i)(1-i)} = \frac{4+2i}{5}-\frac{1+i}{2}
    \displaystyle \quad\phantom{\frac{2}{2-i}-\frac{i}{1+i}}{} = \frac{8+4i}{10}-\frac{5+5i}{10} = \frac{3-i}{10}\vphantom{\Biggl(}
  2. \displaystyle \quad\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}} = \frac{\dfrac{1-i}{1-i}-\dfrac{2}{1-i}}{\dfrac{2i(2+i)}{(2+i)} + \dfrac{i}{2+i}} = \frac{\dfrac{1-i-2}{1-i}}{\dfrac{4i+2i^2 + i}{2+i}} = \frac{\dfrac{-1-i}{1-i}}{\dfrac{-2+5i}{2+i}}
    \displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-i}{1-i}\cdot \frac{2+i}{-2+5i} = \frac{(-1-i)(2+i)}{(1-i)(-2+5i)} = \frac{-2-i-2i-i^2}{-2+5i+2i-5i^2}\vphantom{\Biggl(}
    \displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-1-3i}{3+7i} = \frac{(-1-3i)(3-7i)}{(3+7i)(3-7i)} = \frac{-3+7i-9i+21i^2}{3^2-49i^2}\vphantom{\Biggl(} \displaystyle \quad\phantom{\smash{\frac{1-\dfrac{2}{1-i}}{2i+\dfrac{i}{2+i}}}}{} = \frac{-24-2i}{58} = \frac{-12-i}{29}\vphantom{\Biggl(}

Example 8

Determine the real number \displaystyle a so that the expression \displaystyle \ \frac{2-3i}{2+ai}\ becomes real.

Multiply the numerator and denominator with the complex conjugate of the denominator so that the expression can be written with separate real and imaginary parts.

\displaystyle \frac{(2-3i)(2-ai)}{(2+ai)(2-ai)} = \frac{4-2ai-6i+3ai^2}{4-a^2i^2} = \frac{4-3a-(2a+6)i}{4+a^2}

If the expression is to be real , the imaginary part must be 0, ie.

\displaystyle 2a+6=0\quad\Leftrightarrow\quad a = -3\,\mbox{.}


Equations

For two complex numbers \displaystyle z=a+bi and \displaystyle w=c+di to be equal, requires that both the real and imaginary parts are equal. In other words, that \displaystyle a=c and \displaystyle b=d. When you are looking for an unknown complex number \displaystyle z in an equation, you can either try to solve for the number \displaystyle z in the usual way, or insert \displaystyle z=a+bi in the equation and then compare the real and imaginary parts of the two sides of the equation with each other.

Example 9

  1. Solve the equation \displaystyle 3z+1-i=z-3+7i.

    Collect all \displaystyle z on the left-hand side by subtracting \displaystyle z from both sides
    \displaystyle 2z+1-i = -3+7i
    and now subtract \displaystyle 1-i
    \displaystyle 2z = -4+8i\,\mbox{.}
    This gives that \displaystyle \ z=\frac{-4+8i}{2}=-2+4i\,\mbox{.}
  2. Solve the equation \displaystyle z(-1-i)=6-2i.

    Divide both sides by \displaystyle -1-i in order to obtain \displaystyle z
    \displaystyle z = \frac{6-2i}{-1-i} = \frac{(6-2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-6+6i+2i-2i^2}{(-1)^2 -i^2} = \frac{-4+8i}{2} = -2+4i\,\mbox{.}
  3. Solve the equation \displaystyle 3iz-2i=1-z.

    Adding \displaystyle z and \displaystyle 2i to both sides gives
    \displaystyle 3iz+z=1+2i\quad \Leftrightarrow \quad z(3i+1)=1+2i\,\mbox{.}

    This gives

    \displaystyle z = \frac{1+2i}{1+3i} = \frac{(1+2i)(1-3i)}{(1+3i)(1-3i)} = \frac{1-3i+2i-6i^2}{1-9i^2} = \frac{7-i}{10}\,\mbox{.}
  4. Solve the equation \displaystyle 2z+1-i=\bar z +3 + 2i.

    The equation contains both \displaystyle z as well as \displaystyle \overline{z} and therefore we assume \displaystyle z to be \displaystyle z=a+ib and solve the equation for \displaystyle a and \displaystyle b by equating the real and imaginary parts of both sides
    \displaystyle 2(a+bi)+1-i=(a-bi)+3+2i

    i.e.

    \displaystyle (2a+1)+(2b-1)i=(a+3)+(2-b)i\,\mbox{,}

    which gives

    \displaystyle \left\{\begin{align*} 2a+1 &= a+3\\ 2b-1 &= 2-b\end{align*}\right.\quad\Leftrightarrow\quad\left\{\begin{align*} a &= 2\\ b &= 1\end{align*}\right.\,\mbox{.}
    The answer is therefore, \displaystyle z=2+i.


Study advice

Keep in mind that:

Calculations with complex numbers are done in the same way as with ordinary numbers with the additional information that \displaystyle i^2=-1.

Quotients of complex numbers are simplified by multiplying the numerator and denominator with the complex conjugate of the denominator.