2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Lösning +Solution))
K (Robot: Automated text replacement (-{{Ej vald flik +{{Not selected tab))
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.1 Introduction to integrals|Theory]]}}
+
{{Not selected tab|[[2.1 Introduction to integrals|Theory]]}}
{{Vald flik|[[2.1 Exercises|Exercises]]}}
{{Vald flik|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  

Version vom 08:16, 17. Sep. 2008

       Theory    
  1. REDIRECT Template:Gewählter Tab
 

Exercise 2.1:1

Interpret each integral as an area, and determine its value.

a) \displaystyle \displaystyle\int_{-1}^{2} 2\, dx b) \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx
c) \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx d) \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx

Exercise 2.1:2

Calculate the integrals

a) \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx b) \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx
c) \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx d) \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx

Exercise 2.1:3

Calculate the integrals

a) \displaystyle \displaystyle\int \sin x\, dx b) \displaystyle \displaystyle\int 2\sin x \cos x\, dx
c) \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx

Exercise 2.1:4

a) Calculate the area between the curve \displaystyle y=\sin x and the \displaystyle x-axis when \displaystyle 0\le x \le \frac{5\pi}{4}.
b) Calculate the area under the curve \displaystyle y=-x^2+2x+2 and above the \displaystyle x-axis.
c) Calculate the area of the finite region between the curves \displaystyle y=\frac{1}{4}x^2+2 and \displaystyle y=8-\frac{1}{8}x^2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves \displaystyle y=x+2, y=1 and \displaystyle y=\frac{1}{x}.
e) Calculate the area of the region given by the inequality, \displaystyle x^2\le y\le x+2.

Exercise 2.1:5

Calculate the integral

a) \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (HINT: multiply the top and bottom by the conjugate of the denominator)
b) \displaystyle \displaystyle \int \sin^2 x\ dx\quad (HINT: rewrite the integrand using a trigonometric formula)