1.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Svar +Answer))
K (Robot: Automated text replacement (-Lösning +Solution))
Zeile 25: Zeile 25:
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math>
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Lösning 1.2:1a|Solution b|Lösning 1.2:1b|Solution c|Lösning 1.2:1c|Solution d|Lösning 1.2:1d|Solution e|Lösning 1.2:1e|Solution f|Lösning 1.2:1f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e|Solution f|Solution 1.2:1f}}
===Example 1.2:2===
===Example 1.2:2===
Zeile 45: Zeile 45:
|width="33%"| <math>\cos \sqrt{1-x}</math>
|width="33%"| <math>\cos \sqrt{1-x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Lösning 1.2:2a|Solution b|Lösning 1.2:2b|Solution c|Lösning 1.2:2c|Solution d|Lösning 1.2:2d|Solution e|Lösning 1.2:2e|Solution f|Lösning 1.2:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d|Solution e|Solution 1.2:2e|Solution f|Solution 1.2:2f}}
===Example 1.2:3===
===Example 1.2:3===
Zeile 65: Zeile 65:
|width="33%"| <math>x^{\tan x}</math>
|width="33%"| <math>x^{\tan x}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Lösning 1.2:3a|Solution b|Lösning 1.2:3b|Solution c|Lösning 1.2:3c|Solution d|Lösning 1.2:3d|Solution e|Lösning 1.2:3e|Solution f|Lösning 1.2:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b|Solution c|Solution 1.2:3c|Solution d|Solution 1.2:3d|Solution e|Solution 1.2:3e|Solution f|Solution 1.2:3f}}
===Example 1.2:4===
===Example 1.2:4===
Zeile 76: Zeile 76:
|width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math>
|width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Lösning 1.2:4a|Solution b|Lösning 1.2:4b}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b}}

Version vom 07:29, 17. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Example 1.2:1

Calculate the derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \cos x \cdot \sin x b) \displaystyle x^2\ln x c) \displaystyle \displaystyle\frac{x^2+1}{x+1}
d) \displaystyle \displaystyle\frac{\sin x}{x} e) \displaystyle \displaystyle\frac{x}{\ln x} f) \displaystyle \displaystyle\frac{x \ln x}{\sin x}

Example 1.2:2

Calculate the derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \sin x^2 b) \displaystyle e^{x^2+x} c) \displaystyle \sqrt{\cos x}
d) \displaystyle \ln \ln x e) \displaystyle x(2x+1)^4 f) \displaystyle \cos \sqrt{1-x}

Example 1.2:3

Calculate the derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \ln (\sqrt{x} + \sqrt{x+1}\,) b) \displaystyle \sqrt{\displaystyle \frac{x+1}{x-1}} c) \displaystyle \displaystyle\frac{1}{x\sqrt{1-x^2}}
d) \displaystyle \sin \cos \sin x e) \displaystyle e^{\sin x^2} f) \displaystyle x^{\tan x}

Example 1.2:4

Calculate the second derivative of the following functions and write the answer in simplest possible form:

a) \displaystyle \displaystyle\frac{x}{\sqrt{1-x^2}} b) \displaystyle x ( \sin \ln x +\cos \ln x )