3.3 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Övningar +Exercises))
K (Robot: Automated text replacement (-Svar +Answer))
Zeile 24: Zeile 24:
|width="50%"| <math>\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}</math>
|width="50%"| <math>\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 3.3:1|Solution a|Lösning 3.3:1a|Solution b|Lösning 3.3:1b|Solution c|Lösning 3.3:1c|Solution d|Lösning 3.3:1d|Solution e|Lösning 3.3:1e}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:1|Solution a|Lösning 3.3:1a|Solution b|Lösning 3.3:1b|Solution c|Lösning 3.3:1c|Solution d|Lösning 3.3:1d|Solution e|Lösning 3.3:1e}}
===Exercise 3.3:2===
===Exercise 3.3:2===
Zeile 42: Zeile 42:
|width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math>
|width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 3.3:2|Solution a|Lösning 3.3:2a|Solution b|Lösning 3.3:2b|Solution c|Lösning 3.3:2c|Solution d|Lösning 3.3:2d|Solution e|Lösning 3.3:2e}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:2|Solution a|Lösning 3.3:2a|Solution b|Lösning 3.3:2b|Solution c|Lösning 3.3:2c|Solution d|Lösning 3.3:2d|Solution e|Lösning 3.3:2e}}
===Exercise 3.3:3===
===Exercise 3.3:3===
Zeile 58: Zeile 58:
|width="50%"| <math>iz^2+(2+3i)z-1</math>
|width="50%"| <math>iz^2+(2+3i)z-1</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 3.3:3|Solution a|Lösning 3.3:3a|Solution b|Lösning 3.3:3b|Solution c|Lösning 3.3:3c|Solution d|Lösning 3.3:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:3|Solution a|Lösning 3.3:3a|Solution b|Lösning 3.3:3b|Solution c|Lösning 3.3:3c|Solution d|Lösning 3.3:3d}}
===Exercise 3.3:4===
===Exercise 3.3:4===
Zeile 74: Zeile 74:
|width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math>
|width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 3.3:4|Solution a|Lösning 3.3:4a|Solution b|Lösning 3.3:4b|Solution c|Lösning 3.3:4c|Solution d|Lösning 3.3:4d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:4|Solution a|Lösning 3.3:4a|Solution b|Lösning 3.3:4b|Solution c|Lösning 3.3:4c|Solution d|Lösning 3.3:4d}}
===Exercise 3.3:5===
===Exercise 3.3:5===
Zeile 90: Zeile 90:
|width="50%"| <math>(4+i)z^2+(1-21i)z=17</math>
|width="50%"| <math>(4+i)z^2+(1-21i)z=17</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 3.3:5|Solution a|Lösning 3.3:5a|Solution b|Lösning 3.3:5b|Solution c|Lösning 3.3:5c|Solution d|Lösning 3.3:5d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:5|Solution a|Lösning 3.3:5a|Solution b|Lösning 3.3:5b|Solution c|Lösning 3.3:5c|Solution d|Lösning 3.3:5d}}
===Exercise 3.3:6===
===Exercise 3.3:6===
<div class="ovning">
<div class="ovning">
Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>.
Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>.
-
</div>{{#NAVCONTENT:Answer|Svar 3.3:6|Solution|Lösning 3.3:6}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:6|Solution|Lösning 3.3:6}}

Version vom 14:15, 16. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 3.3:1

Write the following number in the form \displaystyle \,a+ib\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers:

a) \displaystyle (i+1)^{12} b) \displaystyle \displaystyle\Bigl(\frac{1+i\sqrt{3}}{2}\,\Bigr)^{12}
c) \displaystyle (4\sqrt{3} -4i)^{22} d) \displaystyle \Bigl(\displaystyle\frac{1+i\sqrt{3}}{1+i}\,\Bigr)^{12}
e) \displaystyle \displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}

Exercise 3.3:2

Solve the equations

a) \displaystyle z^4=1 b) \displaystyle z^3=-1 c) \displaystyle z^5=-1-i
d) \displaystyle (z-1)^4+4=0 e) \displaystyle \displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1

Exercise 3.3:3

Complete the square of the following expressions

a) \displaystyle z^2 +2z+3 b) \displaystyle z^2 +3iz-\frac{1}{4}
c) \displaystyle -z^2-2iz +4z+1 d) \displaystyle iz^2+(2+3i)z-1

Exercise 3.3:4

Solve the equations

a) \displaystyle z^2=i b) \displaystyle z^2-4z+5=0
c) \displaystyle -z^2+2z+3=0 d) \displaystyle \displaystyle\frac{1}{z} + z = \frac{1}{2}

Exercise 3.3:5

Solve the equations

a) \displaystyle z^2-2(1+i)z+2i-1=0 b) \displaystyle z^2-(2-i)z+(3-i)=0
c) \displaystyle z^2-(1+3i)z-4+3i=0 d) \displaystyle (4+i)z^2+(1-21i)z=17

Exercise 3.3:6

Determine the solution to \displaystyle \,z^2=1+i\, both in polar form and in the form \displaystyle \,a+ib\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers. Use the result to calculate \displaystyle \; \tan \frac{\pi}{8}\,.