2.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Övningar +Exercises)) |
K (Robot: Automated text replacement (-Svar +Answer)) |
||
Zeile 22: | Zeile 22: | ||
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math> | |width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Lösning 2.1:1a|Solution b|Lösning 2.1:1b|Solution c|Lösning 2.1:1c|Solution d|Lösning 2.1:1d}} |
===Exercise 2.1:2=== | ===Exercise 2.1:2=== | ||
Zeile 38: | Zeile 38: | ||
|width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math> | |width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Lösning 2.1:2a|Solution b|Lösning 2.1:2b|Solution c|Lösning 2.1:2c|Solution d|Lösning 2.1:2d}} |
===Exercise 2.1:3=== | ===Exercise 2.1:3=== | ||
Zeile 54: | Zeile 54: | ||
|width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math> | |width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Lösning 2.1:3a|Solution b|Lösning 2.1:3b|Solution c|Lösning 2.1:3c|Solution d|Lösning 2.1:3d}} |
===Exercise 2.1:4=== | ===Exercise 2.1:4=== | ||
Zeile 74: | |||
|width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>. | |width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>. | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Lösning 2.1:4a|Solution b|Lösning 2.1:4b|Solution c|Lösning 2.1:4c|Solution d|Lösning 2.1:4d|Solution e|Lösning 2.1:4e}} |
===Exercise 2.1:5=== | ===Exercise 2.1:5=== | ||
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (HINT: rewrite the integrand using a trigonometric formula) | |width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (HINT: rewrite the integrand using a trigonometric formula) | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer| | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Lösning 2.1:5a|Solution b|Lösning 2.1:5b}} |
Version vom 14:12, 16. Sep. 2008
|
Exercise 2.1:1
Interpret each integral as an area, and determine its value.
a) | \displaystyle \displaystyle\int_{-1}^{2} 2\, dx | b) | \displaystyle \displaystyle\int_{0}^{1} (2x+1)\, dx |
c) | \displaystyle \displaystyle \int_{0}^{2} (3-2x)\, dx | d) | \displaystyle \displaystyle\int_{-1}^{2}|x| \, dx |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 2.1:2
Calculate the integrals
a) | \displaystyle \displaystyle\int_{0}^{2} (x^2+3x^3)\, dx | b) | \displaystyle \displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx |
c) | \displaystyle \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx | d) | \displaystyle \displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 2.1:3
Calculate the integrals
a) | \displaystyle \displaystyle\int \sin x\, dx | b) | \displaystyle \displaystyle\int 2\sin x \cos x\, dx |
c) | \displaystyle \displaystyle\int e^{2x}(e^x+1)\, dx | d) | \displaystyle \displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 2.1:4
a) | Calculate the area between the curve \displaystyle y=\sin x and the \displaystyle x-axis when \displaystyle 0\le x \le \frac{5\pi}{4}. |
b) | Calculate the area under the curve \displaystyle y=-x^2+2x+2 and above the \displaystyle x-axis. |
c) | Calculate the area of the finite region between the curves \displaystyle y=\frac{1}{4}x^2+2 and \displaystyle y=8-\frac{1}{8}x^2 (Swedish A-level 1965). |
d) | Calculate the area of the finite region enclosed by the curves \displaystyle y=x+2, y=1 and \displaystyle y=\frac{1}{x}. |
e) | Calculate the area of the region given by the inequality, \displaystyle x^2\le y\le x+2. |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Exercise 2.1:5
Calculate the integral
a) | \displaystyle \displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad (HINT: multiply the top and bottom by the conjugate of the denominator) |
b) | \displaystyle \displaystyle \int \sin^2 x\ dx\quad (HINT: rewrite the integrand using a trigonometric formula) |