2.3 Partielle Integration

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (2.3 Partiell integrering moved to 2.3 Integration by parts: Robot: moved page)
K (Robot: Automated text replacement (-2.3 Partiell integrering +2.3 Integration by parts))
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Vald flik|[[2.3 Partiell integrering|Theory]]}}
+
{{Vald flik|[[2.3 Integration by parts|Theory]]}}
{{Ej vald flik|[[2.3 Övningar|Exercises]]}}
{{Ej vald flik|[[2.3 Övningar|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  

Version vom 13:05, 16. Sep. 2008

 
  1. REDIRECT Template:Gewählter Tab
  2. REDIRECT Template:Nicht gewählter Tab
 

Contents:

  • Integration by parts.

Learning outcomes:

After this section, you will have learned to:

  • Understand the derivation of the formula for integration by parts.
  • Solve problems about integration that require integration by parts, followed by a substitution (or vice versa).

Integration by parts

To integrate products, one sometimes can make use of a method known as integration by parts. The method is based on the reverse use of the rules for differentiation of products. If \displaystyle f and \displaystyle g are two differentiable functions then the rule for products gives

  1. REDIRECT Template:Abgesetzte Formel

Now if one integrates both sides one gets

  1. REDIRECT Template:Abgesetzte Formel

or after re-ordering

  1. REDIRECT Template:Abgesetzte Formel

This gives us the formula for integration by parts.

Integration by parts:

  1. REDIRECT Template:Abgesetzte Formel

This means in practice that one integrates a product of functions by calling one factor \displaystyle f and the other \displaystyle g, and then replaces the integral \displaystyle \,\int f \cdot g\,dx\ , hopefully, by an easier integral \displaystyle \,\int F \cdot g'\,dx\,\mbox{,}\ where \displaystyle F is a primitive function of \displaystyle f and \displaystyle g' is the derivative of \displaystyle g.


It is important to note that the method does not always lead to an integral which is easier than the original. It may also be crucial how one chooses the functions \displaystyle f and \displaystyle g, as the following example shows.

Example 1

Determine the integral \displaystyle \,\int x \cdot \sin x \, dx\,.

If one chooses \displaystyle f=x and \displaystyle g=\sin x one gets \displaystyle F=x^2/2 and \displaystyle g'=\cos x, and the formula for integration by parts gives

  1. REDIRECT Template:Abgesetzte Formel

The new integral on the right-hand side in this case is not easier than the original integral.

If, instead, one chooses \displaystyle f=\sin x and \displaystyle g=x then \displaystyle F=-\cos x and \displaystyle g'=1, and

  1. REDIRECT Template:Abgesetzte Formel

Example 2

Determine the integral \displaystyle \ \int x^2 \cdot \ln x \, dx\,.

Put \displaystyle f=x^2 and \displaystyle g=\ln x since differentiation eliminates the logarithm when we carry out an integration by parts: \displaystyle F=x^3/3 and \displaystyle g'=1/x. This gives us that

  1. REDIRECT Template:Abgesetzte Formel

Example 3

Determine the integral \displaystyle \ \int x^2 e^x \, dx\,.

Put \displaystyle f=e^x and \displaystyle g=x^2, which gives that \displaystyle F=e^x and \displaystyle g'=2x, and an integration by parts gives

  1. REDIRECT Template:Abgesetzte Formel

This requires further integration by parts to solve the new integral \displaystyle \,\int 2x\,e^x \, dx. We choose in this case \displaystyle f=e^x and \displaystyle g=2x, which gives \displaystyle F=e^x and \displaystyle g'=2

  1. REDIRECT Template:Abgesetzte Formel

The original integral thus becomes

  1. REDIRECT Template:Abgesetzte Formel

Example 4

Determine the integral \displaystyle \ \int e^x \cos x \, dx\,.

In a first integration by parts, we have chosen to integrate the factor \displaystyle e^x and differentiate the factor \displaystyle \cos x,

  1. REDIRECT Template:Abgesetzte Formel

The result of this is that we essentially have replaced the factor \displaystyle \cos x by \displaystyle \sin x in the integral. If we therefore use integration by parts once again (integrate the \displaystyle e^x and differentiate the \displaystyle \sin x) we get

  1. REDIRECT Template:Abgesetzte Formel

Thus the original integral appears here again. Summarising we have:

  1. REDIRECT Template:Abgesetzte Formel

and collecting the integrals to one side gives

  1. REDIRECT Template:Abgesetzte Formel

Although integration by parts in this case did not lead to an easier integral, we arrived at an equation in which the original integral could be ”solved for”. This is not entirely unusual when the integrand is a product of trigonometric functions and / or exponential functions.

Example 5

Determine the integral \displaystyle \ \int_{0}^{1} \frac{2x}{e^x} \, dx\,.

The integral can be rewritten as

  1. REDIRECT Template:Abgesetzte Formel

Substitute \displaystyle f=e^{-x} and \displaystyle g=2x, and integrate by parts

  1. REDIRECT Template:Abgesetzte Formel

Example 6

Determine the integral \displaystyle \ \int \ln \sqrt{x} \ dx\,.

We start by performing a variable substitution \displaystyle u=\sqrt{x} which gives \displaystyle du=dx/2\sqrt{x} = dx/2u, that is, \displaystyle dx = 2u\,du\,,

  1. REDIRECT Template:Abgesetzte Formel

Then we integrate by parts. Put \displaystyle f=2u and \displaystyle g=\ln u, which gives

  1. REDIRECT Template:Abgesetzte Formel

Note. An alternative approach is to rewrite the initial integrand as \displaystyle \ln\sqrt{x} = \tfrac{1}{2}\ln x and then integrate by parts the product \displaystyle \tfrac{1}{2}\cdot\ln x.