Lösung 1.2:1c
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The expression is a quotient of two polynomials, |
- | < | + | <math>x^{2}+1</math> |
- | {{ | + | and |
+ | <math>x+1</math>, and we therefore use the quotient rule for differentiation: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( \frac{x^{2}+1}{x+1} \right)^{\prime }=\frac{\left( x^{2}+1 \right)^{\prime }\centerdot \left( x+1 \right)-\left( x^{2}+1 \right)\centerdot \left( x+1 \right)^{\prime }}{\left( x+1 \right)^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{2x\centerdot \left( x+1 \right)-\left( x^{2}+1 \right)\centerdot 1}{\left( x+1 \right)^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{2x^{2}+2x-x^{2}-1}{\left( x+1 \right)^{2}}=\frac{x^{2}+2x-1}{\left( x+1 \right)^{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | NOTE: it is possible to rewrite the numerator by completing the square, | ||
+ | |||
+ | |||
+ | <math>x^{2}+2x-1=\left( x+1 \right)^{2}-1^{2}-1=\left( x+1 \right)^{2}-2</math> | ||
+ | |||
+ | |||
+ | and then the answer can be written as | ||
+ | |||
+ | |||
+ | |||
+ | <math>\frac{x^{2}+2x-1}{\left( x+1 \right)^{2}}=\frac{\left( x+1 \right)^{2}-2}{\left( x+1 \right)^{2}}=1-\frac{2}{\left( x+1 \right)^{2}}</math> |
Version vom 15:06, 12. Sep. 2008
The expression is a quotient of two polynomials, \displaystyle x^{2}+1 and \displaystyle x+1, and we therefore use the quotient rule for differentiation:
\displaystyle \begin{align}
& \left( \frac{x^{2}+1}{x+1} \right)^{\prime }=\frac{\left( x^{2}+1 \right)^{\prime }\centerdot \left( x+1 \right)-\left( x^{2}+1 \right)\centerdot \left( x+1 \right)^{\prime }}{\left( x+1 \right)^{2}} \\
& \\
& =\frac{2x\centerdot \left( x+1 \right)-\left( x^{2}+1 \right)\centerdot 1}{\left( x+1 \right)^{2}} \\
& \\
& =\frac{2x^{2}+2x-x^{2}-1}{\left( x+1 \right)^{2}}=\frac{x^{2}+2x-1}{\left( x+1 \right)^{2}} \\
\end{align}
NOTE: it is possible to rewrite the numerator by completing the square,
\displaystyle x^{2}+2x-1=\left( x+1 \right)^{2}-1^{2}-1=\left( x+1 \right)^{2}-2
and then the answer can be written as
\displaystyle \frac{x^{2}+2x-1}{\left( x+1 \right)^{2}}=\frac{\left( x+1 \right)^{2}-2}{\left( x+1 \right)^{2}}=1-\frac{2}{\left( x+1 \right)^{2}}