Lösung 1.2:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
| Zeile 1: | Zeile 1: | ||
| - | { | + | We use the product rule with |
| - | < | + | <math>x^{2}</math> |
| - | {{ | + | and |
| + | <math>\ln x</math> | ||
| + | as factors: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \left( x^{2}\ln x \right)^{\prime }=\left( x^{2} \right)^{\prime }\ln x+x^{2}\left( \ln x \right)^{\prime } \\ | ||
| + | & \\ | ||
| + | & =2x\centerdot \ln x+x^{2}\centerdot \frac{1}{x}=2x\ln x+x \\ | ||
| + | \end{align}</math> | ||
Version vom 14:38, 12. Sep. 2008
We use the product rule with \displaystyle x^{2} and \displaystyle \ln x as factors:
\displaystyle \begin{align}
& \left( x^{2}\ln x \right)^{\prime }=\left( x^{2} \right)^{\prime }\ln x+x^{2}\left( \ln x \right)^{\prime } \\
& \\
& =2x\centerdot \ln x+x^{2}\centerdot \frac{1}{x}=2x\ln x+x \\
\end{align}
