Lösung 1.2:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because the expression is a product of two factors, we use the product rule: |
- | < | + | |
- | + | ||
+ | <math>\begin{align} | ||
+ | & \left( \sin x\centerdot \cos x \right)^{\prime }=\left( \cos x \right)^{\prime }\centerdot \sin x+\cos x\centerdot \left( \sin x \right)^{\prime } \\ | ||
+ | & \\ | ||
+ | & =-\sin x\centerdot \sin x+\cos x\centerdot \cos x=\sin ^{2}x+\cos ^{2}x \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Using the formula for double angles, the answer can be simplified to | ||
+ | <math>\cos 2x</math> | ||
+ | . |
Version vom 14:07, 12. Sep. 2008
Because the expression is a product of two factors, we use the product rule:
\displaystyle \begin{align}
& \left( \sin x\centerdot \cos x \right)^{\prime }=\left( \cos x \right)^{\prime }\centerdot \sin x+\cos x\centerdot \left( \sin x \right)^{\prime } \\
& \\
& =-\sin x\centerdot \sin x+\cos x\centerdot \cos x=\sin ^{2}x+\cos ^{2}x \\
\end{align}
Using the formula for double angles, the answer can be simplified to
\displaystyle \cos 2x
.