Lösung 1.2:1a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[Bild: +[[Image:))
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because the expression is a product of two factors, we use the product rule:
-
<center> [[Image:1_2_1a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \left( \sin x\centerdot \cos x \right)^{\prime }=\left( \cos x \right)^{\prime }\centerdot \sin x+\cos x\centerdot \left( \sin x \right)^{\prime } \\
 +
& \\
 +
& =-\sin x\centerdot \sin x+\cos x\centerdot \cos x=\sin ^{2}x+\cos ^{2}x \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
 
 +
Using the formula for double angles, the answer can be simplified to
 +
<math>\cos 2x</math>
 +
.

Version vom 14:07, 12. Sep. 2008

Because the expression is a product of two factors, we use the product rule:


\displaystyle \begin{align} & \left( \sin x\centerdot \cos x \right)^{\prime }=\left( \cos x \right)^{\prime }\centerdot \sin x+\cos x\centerdot \left( \sin x \right)^{\prime } \\ & \\ & =-\sin x\centerdot \sin x+\cos x\centerdot \cos x=\sin ^{2}x+\cos ^{2}x \\ \end{align}



Using the formula for double angles, the answer can be simplified to \displaystyle \cos 2x .