1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
(Translated links into English) |
||
Zeile 3: | Zeile 3: | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
{{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}} | {{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}} | ||
- | {{Vald flik|[[1.1 Övningar| | + | {{Vald flik|[[1.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 1.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" | {| width="100%" | ||
Zeile 26: | Zeile 26: | ||
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}} | ||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:1|Solution a|Lösning 1.1:1a|Solution b|Lösning 1.1:1b|Solution c|Lösning 1.1:1c}} |
- | === | + | ===Exercise 1.1:2=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the derivative <math>f^{\,\prime}(x)</math> when | Determine the derivative <math>f^{\,\prime}(x)</math> when | ||
Zeile 46: | Zeile 46: | ||
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | |width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:2|Solution a|Lösning 1.1:2a|Solution b|Lösning 1.1:2b|Solution c|Lösning 1.1:2c|Solution d|Lösning 1.1:2d|Solution e|Lösning 1.1:2e|Solution f|Lösning 1.1:2f}} |
- | === | + | ===Exercise 1.1:3=== |
<div class="ovning"> | <div class="ovning"> | ||
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:3|Solution |Lösning 1.1:3}} |
- | === | + | ===Exercise 1.1:4=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:4|Solution |Lösning 1.1:4}} |
- | === | + | ===Exercise 1.1:5=== |
<div exercise ="ovning"> | <div exercise ="ovning"> | ||
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:5|Solution |Lösning 1.1:5}} |
Version vom 08:29, 21. Aug. 2008
|
Exercise 1.1:1
The graph for \displaystyle f(x) is shown in the figure.
(Each square in the grid of the figure has width and height 1.) | 1.1 - Figur - Grafen till f(x) i övning 1.1:1 |
Exercise 1.1:2
Determine the derivative \displaystyle f^{\,\prime}(x) when
a) | \displaystyle f(x) = x^2 -3x +1 | b) | \displaystyle f(x)=\cos x -\sin x | c) | \displaystyle f(x)= e^x-\ln x |
d) | \displaystyle f(x)=\sqrt{x} | e) | \displaystyle f(x) = (x^2-1)^2 | f) | \displaystyle f(x)= \cos (x+\pi/3) |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Exercise 1.1:3
A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?
Answer
Solution
Exercise 1.1:4
Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).
Answer
Solution
Exercise 1.1:5
Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).
Answer
Solution