Lösung 3.1:3a

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

First expand the expression

\displaystyle \begin{align}

\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) &= \sqrt{5}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\\[5pt] &= \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\,\textrm{.} \end{align}

Because \displaystyle \sqrt{5} and \displaystyle \sqrt{2} are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that

\displaystyle \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.}

Mit der binomischen Formel \displaystyle (a-b)(a+b) = a^{2} - b^{2}, schreiben wir den Ausdruck wie:

\displaystyle \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) = {\sqrt{5}}^2 -{\sqrt{2}}^2 = 5 -2 = 3