Lösung 3.1:3a

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche

First expand the expression


\displaystyle \begin{align} & \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)=\sqrt{5}\centerdot \sqrt{5}+\sqrt{5}\centerdot \sqrt{2}-\sqrt{2}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\ & =\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\ \end{align}


Because \displaystyle \sqrt{5} and \displaystyle \sqrt{2} are defined as those numbers which, when multiplied with themselves give \displaystyle \text{5} and \displaystyle 2 respectively,


\displaystyle \sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2}=5-2=3


NOTE: The expansion of \displaystyle \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right) can also be done directly with the conjugate rule \displaystyle \left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}} using \displaystyle a=\sqrt{5} and \displaystyle b=\sqrt{2}.