Lösung 3.1:5d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression <math>\sqrt{17}+\sqrt{13}</math>, and use the difference of two squares | We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression <math>\sqrt{17}+\sqrt{13}</math>, and use the difference of two squares | ||
| - | {{ | + | {{Abgesetzte Formel||<math>(a-b)(a+b) = a^2-b^2</math>}} | 
| with <math>a=\sqrt{17}</math> and <math>b=\sqrt{13}</math>. Both roots are squared away and we get | with <math>a=\sqrt{17}</math> and <math>b=\sqrt{13}</math>. Both roots are squared away and we get | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \frac{1}{\sqrt{17}-\sqrt{13}} | \frac{1}{\sqrt{17}-\sqrt{13}} | ||
| &= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt]  | &= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt]  | ||
Version vom 08:38, 22. Okt. 2008
We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression \displaystyle \sqrt{17}+\sqrt{13}, and use the difference of two squares
| \displaystyle (a-b)(a+b) = a^2-b^2 | 
with \displaystyle a=\sqrt{17} and \displaystyle b=\sqrt{13}. Both roots are squared away and we get
| \displaystyle \begin{align} \frac{1}{\sqrt{17}-\sqrt{13}} &= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{(\sqrt{17})^{2}-(\sqrt{13})^{2}}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{17-13}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{4}\,\textrm{.} \end{align} | 
This expression cannot be simplified any further because neither 17 nor 13 contain any squares as factors.
 
		  