Lösung 4.3:7b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Using the addition formula, we rewrite | + | Using the addition formula, we rewrite <math>\sin (x+y)</math> as |
- | <math>\ | + | |
- | as | + | |
+ | {{Displayed math||<math>\sin (x+y) = \sin x\cdot\cos y + \cos x\cdot\sin y\,\textrm{.}</math>}} | ||
- | <math>\ | + | If we use the same solution procedure as in exercise a, we use the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math> to express the unknown factors <math>\sin x</math> and <math>\sin y</math> in terms of <math>\cos x</math> and <math>\cos y</math>, |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \sin x &= \pm\sqrt{1-\cos^2\!x} = \pm\sqrt{1-\bigl(\tfrac{2}{5}\bigr)^2} = \pm\sqrt{1-\tfrac{4}{25}} = \pm\frac{\sqrt{21}}{5}\,,\\[5pt] | ||
+ | \sin y &= \pm\sqrt{1-\cos^2\!y} = \pm\sqrt{1-\bigl(\tfrac{3}{5}\bigr)^2} = \pm\sqrt{1-\tfrac{9}{25}} = \pm\frac{4}{5}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | The angles ''x'' and ''y'' lie in the first quadrant and both <math>\sin x</math> and <math>\sin y</math> are therefore positive, i.e. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | The angles | + | |
- | + | ||
- | and | + | |
- | + | ||
- | lie in the first quadrant and both | + | |
- | <math>\ | + | |
- | and | + | |
- | <math>\ | + | |
- | are therefore positive, i.e. | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\sin x = \frac{\sqrt{21}}{5}\qquad\text{and}\qquad\sin y = \frac{4}{5}\,\textrm{.}</math>}} | ||
Thus, the answer is | Thus, the answer is | ||
- | + | {{Displayed math||<math>\sin (x+y) = \frac{\sqrt{21}}{5}\cdot\frac{3}{5} + \frac{2}{5}\cdot\frac{4}{5} = \frac{3\sqrt{21}+8}{25}\,\textrm{.}</math>}} | |
- | <math>\ | + |
Version vom 08:11, 10. Okt. 2008
Using the addition formula, we rewrite \displaystyle \sin (x+y) as
If we use the same solution procedure as in exercise a, we use the Pythagorean identity \displaystyle \cos^2\!v + \sin^2\!v = 1 to express the unknown factors \displaystyle \sin x and \displaystyle \sin y in terms of \displaystyle \cos x and \displaystyle \cos y,
The angles x and y lie in the first quadrant and both \displaystyle \sin x and \displaystyle \sin y are therefore positive, i.e.
Thus, the answer is