Lösung 4.1:1
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | The only thing we really need to remember is that one | + | The only thing we really need to remember is that one revolution corresponds to |
| - | + | 360° or <math>2\pi</math> radians. Then we get: | |
| - | or | + | |
| - | <math> | + | |
| - | radians. Then we get: | + | |
| - | a) | + | {| |
| - | <math>\frac{1}{4} | + | ||a) |
| - | + | |width="100%"|<math>\frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> and | |
| - | + | |- | |
| - | and | + | || |
| - | + | |width="100%"|<math>\frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,}</math> | |
| - | <math>\frac{1}{4} | + | |- |
| - | + | |height="10px"| | |
| - | + | |- | |
| - | radians | + | ||b) |
| - | + | |width="100%"|<math>\frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> and | |
| - | + | |- | |
| - | + | || | |
| - | + | ||<math>\frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}</math> | |
| - | b) | + | |- |
| - | <math>\frac{3}{8} | + | |height="10px"| |
| - | + | |- | |
| - | + | ||c) | |
| - | and | + | |width="100%"|<math>-\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> and |
| - | + | |- | |
| - | <math>\frac{3}{8} | + | || |
| - | + | |width="100%"|<math>-\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,}</math> | |
| - | + | |- | |
| - | radians | + | |height="10px"| |
| - | + | |- | |
| - | + | ||d) | |
| - | + | |width="100%"|<math>\frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> and | |
| - | + | |- | |
| - | + | || | |
| - | c) | + | |width="100%"|<math>\frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.}</math> |
| - | <math>-\frac{2}{3} | + | |} |
| - | + | ||
| - | + | ||
| - | and | + | |
| - | + | ||
| - | <math>-\frac{2}{3} | + | |
| - | + | ||
| - | + | ||
| - | radians | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | d) | + | |
| - | <math>\frac{97}{12} | + | |
| - | + | ||
| - | + | ||
| - | and | + | |
| - | + | ||
| - | <math>\frac{97}{12} | + | |
| - | + | ||
| - | + | ||
| - | radians | + | |
| - | + | ||
| - | + | ||
Version vom 07:10, 3. Okt. 2008
The only thing we really need to remember is that one revolution corresponds to 360° or \displaystyle 2\pi radians. Then we get:
| a) | \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} and |
| \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,} | |
| b) | \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} and |
| \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,} | |
| c) | \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} and |
| \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,} | |
| d) | \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} and |
| \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.} |
