Lösung 4.4:7c
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:7c moved to Solution 4.4:7c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we want to solve the equation |
| - | < | + | <math>\text{cos 3}x=\text{sin 4}x</math>, we need an additional result which tells us for which values of |
| - | { | + | <math>u</math> |
| - | + | and | |
| - | < | + | <math>v</math> |
| - | { | + | the equality |
| - | { | + | <math>\text{cos }u=\text{sin }v</math> |
| - | < | + | holds, but to get that we have to start with the equality |
| - | + | <math>\cos u=\cos v</math>. | |
| + | |||
| + | So, we start by looking at the equality | ||
| + | |||
| + | |||
| + | <math>\cos u=\cos v</math> | ||
| + | |||
| + | |||
| + | We know that for fixed | ||
| + | <math>u</math> | ||
| + | there are two angles | ||
| + | <math>v=u\text{ }</math> | ||
| + | and | ||
| + | <math>v=-\text{u}</math> | ||
| + | in the unit circle which have the cosine value | ||
| + | <math>\cos u</math>, i.e. their | ||
| + | <math>x</math> | ||
| + | -coordinate is equal to | ||
| + | <math>\cos u</math>. | ||
| + | |||
[[Image:4_4_7_c1.gif|center]] | [[Image:4_4_7_c1.gif|center]] | ||
| + | |||
| + | Imagine now that the whole unit circle is rotated anti-clockwise an angle | ||
| + | <math>{\pi }/{2}\;</math>. The line | ||
| + | <math>x=\cos u</math> | ||
| + | will become the line | ||
| + | <math>y=\cos u</math> | ||
| + | and the angles | ||
| + | <math>u</math> | ||
| + | and | ||
| + | <math>-u</math> | ||
| + | are rotated to | ||
| + | <math>u+{\pi }/{2}\;</math> | ||
| + | and | ||
| + | <math>-u+{\pi }/{2}\;</math>, respectively. | ||
| + | |||
[[Image:4_4_7_c2.gif|center]] | [[Image:4_4_7_c2.gif|center]] | ||
| + | |||
| + | The angles | ||
| + | <math>u+{\pi }/{2}\;</math> | ||
| + | and | ||
| + | <math>-u+{\pi }/{2}\;</math> | ||
| + | therefore have their | ||
| + | <math>y</math> | ||
| + | -coordinate, and hence sine value, equal to | ||
| + | <math>\cos u</math>. In other words, the equality | ||
| + | |||
| + | |||
| + | <math>\text{cos }u=\text{sin }v</math> | ||
| + | |||
| + | |||
| + | holds for fixed | ||
| + | <math>u</math> | ||
| + | in the unit circle when | ||
| + | <math>v=\pm u+{\pi }/{2}\;</math>, and more generally when | ||
| + | |||
| + | |||
| + | <math>v=\pm u+\frac{\pi }{2}+2n\pi </math> | ||
| + | ( | ||
| + | <math>n</math> | ||
| + | an arbitrary integer). | ||
| + | |||
| + | For our equation | ||
| + | <math>\text{cos 3}x=\text{sin 4}x</math>, this result means that | ||
| + | <math>x\text{ }</math> | ||
| + | must satisfy | ||
| + | |||
| + | |||
| + | <math>4x=\pm 3x+\frac{\pi }{2}+2n\pi </math> | ||
| + | |||
| + | |||
| + | This means that the solutions to the equation are | ||
| + | |||
| + | |||
| + | <math>\left\{ \begin{array}{*{35}l} | ||
| + | x=\frac{\pi }{2}+2n\pi \\ | ||
| + | x=\frac{\pi }{14}+\frac{2}{7}\pi n \\ | ||
| + | \end{array} \right.</math> | ||
| + | ( | ||
| + | <math>n</math> | ||
| + | an arbitrary integer) | ||
Version vom 13:20, 1. Okt. 2008
If we want to solve the equation \displaystyle \text{cos 3}x=\text{sin 4}x, we need an additional result which tells us for which values of \displaystyle u and \displaystyle v the equality \displaystyle \text{cos }u=\text{sin }v holds, but to get that we have to start with the equality \displaystyle \cos u=\cos v.
So, we start by looking at the equality
\displaystyle \cos u=\cos v
We know that for fixed
\displaystyle u
there are two angles
\displaystyle v=u\text{ }
and
\displaystyle v=-\text{u}
in the unit circle which have the cosine value
\displaystyle \cos u, i.e. their
\displaystyle x
-coordinate is equal to
\displaystyle \cos u.
Imagine now that the whole unit circle is rotated anti-clockwise an angle \displaystyle {\pi }/{2}\;. The line \displaystyle x=\cos u will become the line \displaystyle y=\cos u and the angles \displaystyle u and \displaystyle -u are rotated to \displaystyle u+{\pi }/{2}\; and \displaystyle -u+{\pi }/{2}\;, respectively.
The angles \displaystyle u+{\pi }/{2}\; and \displaystyle -u+{\pi }/{2}\; therefore have their \displaystyle y -coordinate, and hence sine value, equal to \displaystyle \cos u. In other words, the equality
\displaystyle \text{cos }u=\text{sin }v
holds for fixed
\displaystyle u
in the unit circle when
\displaystyle v=\pm u+{\pi }/{2}\;, and more generally when
\displaystyle v=\pm u+\frac{\pi }{2}+2n\pi
(
\displaystyle n
an arbitrary integer).
For our equation \displaystyle \text{cos 3}x=\text{sin 4}x, this result means that \displaystyle x\text{ } must satisfy
\displaystyle 4x=\pm 3x+\frac{\pi }{2}+2n\pi
This means that the solutions to the equation are
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{\pi }{2}+2n\pi \\
x=\frac{\pi }{14}+\frac{2}{7}\pi n \\
\end{array} \right.
(
\displaystyle n
an arbitrary integer)


