Lösung 3.1:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
First expand the expression | First expand the expression | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) | ||
+ | &= \sqrt{5}\cdot\sqrt{5} + \sqrt{5}\cdot\sqrt{2} - \sqrt{2}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\\[5pt] | ||
+ | &= \sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math> | + | Because <math>\sqrt{5}</math> and <math>\sqrt{2}</math> are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\sqrt{5}\cdot\sqrt{5} - \sqrt{2}\cdot\sqrt{2} = 5-2 = 3\,\textrm{.}</math>}} | ||
- | Because | ||
- | <math>\sqrt{5}</math> | ||
- | and | ||
- | <math>\sqrt{2}</math> | ||
- | are defined as those numbers which, when multiplied with themselves give | ||
- | <math>\text{5}</math> | ||
- | and | ||
- | <math>2</math> respectively, | ||
- | + | Note: The expansion of <math>\bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr)</math> can also be done directly with the formula for difference of two squares <math>(a-b)(a+b) = a^{2} - b^{2}</math> using <math>a=\sqrt{5}</math> and <math>b=\sqrt{2}</math>. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\ | + | |
- | can also be done directly with the | + | |
- | <math> | + | |
- | using | + | |
- | <math>a=\sqrt{5}</math> | + | |
- | and | + | |
- | <math>b=\sqrt{2}</math>. | + |
Version vom 08:43, 30. Sep. 2008
First expand the expression
Because \displaystyle \sqrt{5} and \displaystyle \sqrt{2} are defined as those numbers which, when multiplied with themselves give 5 and 2 respectively, we have that
Note: The expansion of \displaystyle \bigl(\sqrt{5}-\sqrt{2}\bigr)\bigl(\sqrt{5}+\sqrt{2}\bigr) can also be done directly with the formula for difference of two squares \displaystyle (a-b)(a+b) = a^{2} - b^{2} using \displaystyle a=\sqrt{5} and \displaystyle b=\sqrt{2}.