Lösung 2.3:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Because both terms,
+
Because both terms, <math>x(x+3)</math> and <math>x(2x-9)</math>, contain the factor <math>x</math>, we can take out <math>x</math> from the left-hand side and collect together the remaining expression,
-
<math>x\left( x+3 \right)</math>
+
-
and
+
-
<math>x\left( 2x-9 \right)</math>
+
-
contain the factor
+
-
<math>x</math>, we can take out
+
-
<math>x</math> from the left-hand side and collect together the remaining expression:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& x\left( x+3 \right)-x\left( 2x-9 \right)=x\left( \left( x+3 \right)-\left( 2x-9 \right) \right) \\
+
-
& =x\left( x+3-2x+9 \right)=x\left( -x+12 \right) \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
x(x+3)-x(2x-9)
 +
&= x\bigl((x+3)-(2x-9)\bigr)\\[5pt]
 +
&= x(x+3-2x+9)\\[5pt]
 +
&= x(-x+12)\,\textrm{.}
 +
\end{align}</math>}}
The equation is thus
The equation is thus
 +
{{Displayed math||<math>x(-x+12) = 0</math>}}
-
<math>x\left( -x+12 \right)=0</math>
+
and we obtain directly that the equation is satisfied if either <math>x</math> or <math>-x+12</math> is zero. The solutions to the equation are therefore <math>x=0</math> and <math>x=12</math>.
-
 
+
-
and we obtain directly that the equation is satisfied if either
+
-
<math>x</math>
+
-
or
+
-
<math>-x+\text{12}</math>
+
-
is zero. The solutions to the equation are therefore
+
-
<math>x=0\text{ }</math>
+
-
and
+
-
<math>x=\text{12}</math>.
+
-
Here, it can be worth checking that
+
Here, it can be worth checking that <math>x=12</math> is a solution (the case
-
<math>x=\text{12 }</math>
+
<math>x=0</math> is obvious)
-
is a solution (the case
+
-
<math>x=0</math>
+
-
is obvious):
+
-
LHS
+
{{Displayed math||<math>\text{LHS} = 12\cdot (12+3) - 12\cdot (2\cdot 12-9) = 2\cdot 15 - 12\cdot 15 = 0 = \text{RHS.}</math>}}
-
<math>=12\centerdot \left( 12+3 \right)-12\centerdot \left( 2\centerdot 12-9 \right)=2\centerdot 15-12\centerdot 15=0=</math>
+
-
RHS
+

Version vom 08:39, 29. Sep. 2008

Because both terms, \displaystyle x(x+3) and \displaystyle x(2x-9), contain the factor \displaystyle x, we can take out \displaystyle x from the left-hand side and collect together the remaining expression,

Vorlage:Displayed math

The equation is thus

Vorlage:Displayed math

and we obtain directly that the equation is satisfied if either \displaystyle x or \displaystyle -x+12 is zero. The solutions to the equation are therefore \displaystyle x=0 and \displaystyle x=12.

Here, it can be worth checking that \displaystyle x=12 is a solution (the case \displaystyle x=0 is obvious)

Vorlage:Displayed math