Lösung 4.2:4f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:4f moved to Solution 4.2:4f: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we add |
| - | < | + | <math>2\pi </math> |
| - | {{ | + | to |
| + | <math>-\frac{5\pi }{3}</math>, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle | ||
| + | <math>-\frac{5\pi }{3}</math> | ||
| + | and consequently has the same tangent value: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \tan \left( -\frac{5\pi }{3} \right)=\tan \left( -\frac{5\pi }{3}+2\pi \right)=\tan \frac{\pi }{3} \\ | ||
| + | & =\frac{\sin \frac{\pi }{3}}{\cos \frac{\pi }{3}}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3} \\ | ||
| + | \end{align}</math> | ||
Version vom 13:27, 28. Sep. 2008
If we add \displaystyle 2\pi to \displaystyle -\frac{5\pi }{3}, we get a new angle in the first quadrant which corresponds to the same point on the unit circle as the old angle \displaystyle -\frac{5\pi }{3} and consequently has the same tangent value:
\displaystyle \begin{align}
& \tan \left( -\frac{5\pi }{3} \right)=\tan \left( -\frac{5\pi }{3}+2\pi \right)=\tan \frac{\pi }{3} \\
& =\frac{\sin \frac{\pi }{3}}{\cos \frac{\pi }{3}}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3} \\
\end{align}
