Lösung 2.2:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule:
+
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \left( x+3 \right)^{2}-\left( x-5 \right)^{2}=\left( x^{2}+2\centerdot 3x+3^{2} \right)-\left( x^{2}-2\centerdot 5x+5^{2} \right) \\
+
-
& =x^{2}+6x+9-x^{2}+10x-25=16x-16 \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
(x+3)^{2}-(x-5)^{2}
 +
&= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt]
 +
&= x^{2}+6x+9-x^{2}+10x-25\\[5pt]
 +
&=16x-16\,\textrm{.}
 +
\end{align}</math>}}
Thus, the equation is
Thus, the equation is
 +
{{Displayed math||<math>16x-16=6x+4\,\textrm{.}</math>}}
-
<math>16x-16=6x+4</math>
+
Now, move all ''x'''s to the left-hand side (subtract 6''x'' from both sides) and the constants to the right-hand side (add 16 to both sides)
-
 
+
-
 
+
-
Now, move all "
+
-
<math>x</math>
+
-
"s to the left-hand side (subtract
+
-
<math>6x</math>
+
-
from both sides) and the constants to the right-hand side (add
+
-
<math>16</math>
+
-
to both sides)
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& 16x-6x=4+16 \\
+
-
& 10x=20 \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
Divide both sides by
+
-
<math>10</math>
+
-
to get the answer
+
-
 
+
-
 
+
-
<math>x=\frac{20}{10}=2</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
16x-6x&=4+16\,,\\[5pt]
 +
10x&=20\,\textrm{.}
 +
\end{align}</math>}}
-
Finally, we check that
+
Divide both sides by 10 to get the answer
-
<math>x=2</math>
+
-
satisfies the equation in the exercise:
+
-
LHS =
+
{{Displayed math||<math>x=\frac{20}{10}=2\,\textrm{.}</math>}}
-
<math>\left( 2+3 \right)^{2}-\left( 2-5 \right)^{2}=5^{2}-\left( -3 \right)^{2}=25-9=16</math>
+
 +
Finally, we check that <math>x=2</math> satisfies the equation in the exercise
-
RHS =
+
{{Displayed math||<math>\begin{align}
-
<math>6\centerdot 2+4=12+4=16</math>
+
\text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt]
 +
\text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.}
 +
\end{align}</math>}}

Version vom 14:17, 23. Sep. 2008

We can simplify the left-hand side in the equation by expanding the squares using the squaring rule

Vorlage:Displayed math

Thus, the equation is

Vorlage:Displayed math

Now, move all x's to the left-hand side (subtract 6x from both sides) and the constants to the right-hand side (add 16 to both sides)

Vorlage:Displayed math

Divide both sides by 10 to get the answer

Vorlage:Displayed math

Finally, we check that \displaystyle x=2 satisfies the equation in the exercise

Vorlage:Displayed math