Lösung 3.1:5d
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.1:5d moved to Solution 3.1:5d: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression |
| - | < | + | <math>\left( a-b \right)\left( a+b \right)=a^{2}-b^{2}</math>, and use the conjugate rule |
| - | {{ | + | |
| + | |||
| + | with | ||
| + | <math>a=\sqrt{17}</math> | ||
| + | and | ||
| + | <math>b=\sqrt{13}</math>. Both roots are squared away and we get | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{1}{\sqrt{17}-\sqrt{13}}=\frac{1}{\sqrt{17}-\sqrt{13}}\centerdot \frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}} \\ | ||
| + | & =\frac{\sqrt{17}+\sqrt{13}}{\left( \sqrt{17} \right)^{2}-\left( \sqrt{13} \right)^{2}}=\frac{\sqrt{17}+\sqrt{13}}{17-13}=\frac{\sqrt{17}+\sqrt{13}}{4}. \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | This expression cannot be simplified any further because neither | ||
| + | <math>\text{17}</math> | ||
| + | nor | ||
| + | <math>\text{13}</math> | ||
| + | contain any squares as factors. | ||
Version vom 14:51, 22. Sep. 2008
We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression \displaystyle \left( a-b \right)\left( a+b \right)=a^{2}-b^{2}, and use the conjugate rule
with
\displaystyle a=\sqrt{17}
and
\displaystyle b=\sqrt{13}. Both roots are squared away and we get
\displaystyle \begin{align}
& \frac{1}{\sqrt{17}-\sqrt{13}}=\frac{1}{\sqrt{17}-\sqrt{13}}\centerdot \frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}} \\
& =\frac{\sqrt{17}+\sqrt{13}}{\left( \sqrt{17} \right)^{2}-\left( \sqrt{13} \right)^{2}}=\frac{\sqrt{17}+\sqrt{13}}{17-13}=\frac{\sqrt{17}+\sqrt{13}}{4}. \\
\end{align}
This expression cannot be simplified any further because neither
\displaystyle \text{17}
nor
\displaystyle \text{13}
contain any squares as factors.
