Lösung 3.1:5d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:5d moved to Solution 3.1:5d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression
-
<center> [[Image:3_1_5d.gif]] </center>
+
<math>\left( a-b \right)\left( a+b \right)=a^{2}-b^{2}</math>, and use the conjugate rule
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
with
 +
<math>a=\sqrt{17}</math>
 +
and
 +
<math>b=\sqrt{13}</math>. Both roots are squared away and we get
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{1}{\sqrt{17}-\sqrt{13}}=\frac{1}{\sqrt{17}-\sqrt{13}}\centerdot \frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}} \\
 +
& =\frac{\sqrt{17}+\sqrt{13}}{\left( \sqrt{17} \right)^{2}-\left( \sqrt{13} \right)^{2}}=\frac{\sqrt{17}+\sqrt{13}}{17-13}=\frac{\sqrt{17}+\sqrt{13}}{4}. \\
 +
\end{align}</math>
 +
 
 +
 
 +
This expression cannot be simplified any further because neither
 +
<math>\text{17}</math>
 +
nor
 +
<math>\text{13}</math>
 +
contain any squares as factors.

Version vom 14:51, 22. Sep. 2008

We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression \displaystyle \left( a-b \right)\left( a+b \right)=a^{2}-b^{2}, and use the conjugate rule


with \displaystyle a=\sqrt{17} and \displaystyle b=\sqrt{13}. Both roots are squared away and we get


\displaystyle \begin{align} & \frac{1}{\sqrt{17}-\sqrt{13}}=\frac{1}{\sqrt{17}-\sqrt{13}}\centerdot \frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}} \\ & =\frac{\sqrt{17}+\sqrt{13}}{\left( \sqrt{17} \right)^{2}-\left( \sqrt{13} \right)^{2}}=\frac{\sqrt{17}+\sqrt{13}}{17-13}=\frac{\sqrt{17}+\sqrt{13}}{4}. \\ \end{align}


This expression cannot be simplified any further because neither \displaystyle \text{17} nor \displaystyle \text{13} contain any squares as factors.