Lösung 3.1:3a
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.1:3a moved to Solution 3.1:3a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First expand the expression |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)=\sqrt{5}\centerdot \sqrt{5}+\sqrt{5}\centerdot \sqrt{2}-\sqrt{2}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\ | ||
+ | & =\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Because | ||
+ | <math>\sqrt{5}</math> | ||
+ | and | ||
+ | <math>\sqrt{2}</math> | ||
+ | are defined as those numbers which, when multiplied with themselves give | ||
+ | <math>\text{5}</math> | ||
+ | and | ||
+ | <math>2</math> respectively, | ||
+ | |||
+ | |||
+ | <math>\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2}=5-2=3</math> | ||
+ | |||
+ | |||
+ | NOTE: The expansion of | ||
+ | <math>\left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)</math> | ||
+ | can also be done directly with the conjugate rule | ||
+ | <math>\left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}</math> | ||
+ | using | ||
+ | <math>a=\sqrt{5}</math> | ||
+ | and | ||
+ | <math>b=\sqrt{2}</math>. |
Version vom 12:33, 22. Sep. 2008
First expand the expression
\displaystyle \begin{align}
& \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)=\sqrt{5}\centerdot \sqrt{5}+\sqrt{5}\centerdot \sqrt{2}-\sqrt{2}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\
& =\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\
\end{align}
Because
\displaystyle \sqrt{5}
and
\displaystyle \sqrt{2}
are defined as those numbers which, when multiplied with themselves give
\displaystyle \text{5}
and
\displaystyle 2 respectively,
\displaystyle \sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2}=5-2=3
NOTE: The expansion of
\displaystyle \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)
can also be done directly with the conjugate rule
\displaystyle \left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}
using
\displaystyle a=\sqrt{5}
and
\displaystyle b=\sqrt{2}.