Lösung 2.3:3d
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:3d moved to Solution 2.3:3d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because both terms, |
- | < | + | <math>x\left( x+3 \right)</math> |
- | {{ | + | and |
+ | <math>x\left( 2x-9 \right)</math> | ||
+ | contain the factor | ||
+ | <math>x</math>, we can take out | ||
+ | <math>x</math> from the left-hand side and collect together the remaining expression: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x\left( x+3 \right)-x\left( 2x-9 \right)=x\left( \left( x+3 \right)-\left( 2x-9 \right) \right) \\ | ||
+ | & =x\left( x+3-2x+9 \right)=x\left( -x+12 \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The equation is thus | ||
+ | |||
+ | |||
+ | <math>x\left( -x+12 \right)=0</math> | ||
+ | |||
+ | and we obtain directly that the equation is satisfied if either | ||
+ | <math>x</math> | ||
+ | or | ||
+ | <math>-x+\text{12}</math> | ||
+ | is zero. The solutions to the equation are therefore | ||
+ | <math>x=0\text{ }</math> | ||
+ | and | ||
+ | <math>x=\text{12}</math>. | ||
+ | |||
+ | Here, it can be worth checking that | ||
+ | <math>x=\text{12 }</math> | ||
+ | is a solution (the case | ||
+ | <math>x=0</math> | ||
+ | is obvious): | ||
+ | |||
+ | LHS | ||
+ | <math>=12\centerdot \left( 12+3 \right)-12\centerdot \left( 2\centerdot 12-9 \right)=2\centerdot 15-12\centerdot 15=0=</math> | ||
+ | RHS |
Version vom 15:05, 20. Sep. 2008
Because both terms, \displaystyle x\left( x+3 \right) and \displaystyle x\left( 2x-9 \right) contain the factor \displaystyle x, we can take out \displaystyle x from the left-hand side and collect together the remaining expression:
\displaystyle \begin{align}
& x\left( x+3 \right)-x\left( 2x-9 \right)=x\left( \left( x+3 \right)-\left( 2x-9 \right) \right) \\
& =x\left( x+3-2x+9 \right)=x\left( -x+12 \right) \\
\end{align}
The equation is thus
\displaystyle x\left( -x+12 \right)=0
and we obtain directly that the equation is satisfied if either \displaystyle x or \displaystyle -x+\text{12} is zero. The solutions to the equation are therefore \displaystyle x=0\text{ } and \displaystyle x=\text{12}.
Here, it can be worth checking that \displaystyle x=\text{12 } is a solution (the case \displaystyle x=0 is obvious):
LHS \displaystyle =12\centerdot \left( 12+3 \right)-12\centerdot \left( 2\centerdot 12-9 \right)=2\centerdot 15-12\centerdot 15=0= RHS