Lösung 2.2:2c
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.2:2c moved to Solution 2.2:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can simplify the left-hand side in the equation by expanding the squares using the squaring rule: |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \left( x+3 \right)^{2}-\left( x-5 \right)^{2}=\left( x^{2}+2\centerdot 3x+3^{2} \right)-\left( x^{2}-2\centerdot 5x+5^{2} \right) \\ | ||
+ | & =x^{2}+6x+9-x^{2}+10x-25=16x-16 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Thus, the equation is | ||
+ | |||
+ | |||
+ | <math>16x-16=6x+4</math> | ||
+ | |||
+ | |||
+ | Now, move all " | ||
+ | <math>x</math> | ||
+ | "s to the left-hand side (subtract | ||
+ | <math>6x</math> | ||
+ | from both sides) and the constants to the right-hand side (add | ||
+ | <math>16</math> | ||
+ | to both sides) | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 16x-6x=4+16 \\ | ||
+ | & 10x=20 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Divide both sides by | ||
+ | <math>10</math> | ||
+ | to get the answer | ||
+ | |||
+ | |||
+ | <math>x=\frac{20}{10}=2</math> | ||
+ | |||
+ | |||
+ | Finally, we check that | ||
+ | <math>x=2</math> | ||
+ | satisfies the equation in the exercise: | ||
+ | |||
+ | LHS = | ||
+ | <math>\left( 2+3 \right)^{2}-\left( 2-5 \right)^{2}=5^{2}-\left( -3 \right)^{2}=25-9=16</math> | ||
+ | |||
+ | |||
+ | RHS = | ||
+ | <math>6\centerdot 2+4=12+4=16</math> |
Version vom 12:58, 17. Sep. 2008
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule:
\displaystyle \begin{align}
& \left( x+3 \right)^{2}-\left( x-5 \right)^{2}=\left( x^{2}+2\centerdot 3x+3^{2} \right)-\left( x^{2}-2\centerdot 5x+5^{2} \right) \\
& =x^{2}+6x+9-x^{2}+10x-25=16x-16 \\
\end{align}
Thus, the equation is
\displaystyle 16x-16=6x+4
Now, move all "
\displaystyle x
"s to the left-hand side (subtract
\displaystyle 6x
from both sides) and the constants to the right-hand side (add
\displaystyle 16
to both sides)
\displaystyle \begin{align}
& 16x-6x=4+16 \\
& 10x=20 \\
\end{align}
Divide both sides by
\displaystyle 10
to get the answer
\displaystyle x=\frac{20}{10}=2
Finally, we check that
\displaystyle x=2
satisfies the equation in the exercise:
LHS = \displaystyle \left( 2+3 \right)^{2}-\left( 2-5 \right)^{2}=5^{2}-\left( -3 \right)^{2}=25-9=16
RHS =
\displaystyle 6\centerdot 2+4=12+4=16