Lösung 1.3:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.3:1b moved to Solution 1.3:1b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | Before we begin to calculate, it is worthwhile looking at the expression first and investigating |
- | < | + | whether it can be simplified using the power rules, so as to reduce the arithmetical work somewhat. |
- | {{ | + | |
+ | Because | ||
+ | <math>9=3\centerdot 3=3^{2}</math> | ||
+ | , we have | ||
+ | |||
+ | |||
+ | <math>9^{-2}=\left( 3^{2} \right)^{-2}=3^{2\centerdot \left( -2 \right)}=3^{-4}</math> | ||
+ | |||
+ | |||
+ | and thus | ||
+ | |||
+ | |||
+ | <math>3^{5}\centerdot 9^{-2}=3^{5}\centerdot 3^{-4}=3^{5-4}=3</math> |
Version vom 11:06, 15. Sep. 2008
Before we begin to calculate, it is worthwhile looking at the expression first and investigating whether it can be simplified using the power rules, so as to reduce the arithmetical work somewhat.
Because \displaystyle 9=3\centerdot 3=3^{2} , we have
\displaystyle 9^{-2}=\left( 3^{2} \right)^{-2}=3^{2\centerdot \left( -2 \right)}=3^{-4}
and thus
\displaystyle 3^{5}\centerdot 9^{-2}=3^{5}\centerdot 3^{-4}=3^{5-4}=3